import torch import transformers class LlamaComboScaledRope(torch.nn.Module): """ stolen from: https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test https://github.com/jquesnelle/scaled-rope """ def __init__( self, dim, max_position_embeddings=2048, base=10000, scale=1, alpha=1, device=None, ): super().__init__() if alpha != 1: base = base * alpha ** (dim / (dim - 2)) self.scale = 1 / scale inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) self.register_buffer("inv_freq", inv_freq) # Build here to make `torch.jit.trace` work. self.max_seq_len_cached = max_position_embeddings t = torch.arange( self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype, ) t *= self.scale freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) dtype = torch.get_default_dtype() self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False ) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. if seq_len > self.max_seq_len_cached: self.max_seq_len_cached = seq_len t = torch.arange( self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype ) t *= self.scale freqs = torch.einsum("i,j->ij", t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self.register_buffer( "cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False ) self.register_buffer( "sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False ) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), ) def llama_scale_rope(model: transformers.LlamaForCausalLM, **kwargs): kwargs.update({"device": model.device}) for layer in model.model.layers: layer.self_attn.rotary_emb = LlamaComboScaledRope( layer.self_attn.head_dim, **kwargs )