File size: 4,792 Bytes
4c00383
ced8eaf
 
4c00383
 
 
52ad111
ced8eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c00383
 
 
 
 
 
4f456d9
 
edddb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced8eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
- en
license: apache-2.0
datasets:
- Open-Orca/SlimOrca
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-11b-slimorca
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 64.25
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.81
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 54.66
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 52.39
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=chargoddard/mistral-11b-slimorca
      name: Open LLM Leaderboard
---

Full weight fine tuned on two epochs of [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). Uses Mistral Instruct's prompt format.

The base model for this came from a variation on Undi's [Mistral 11B recipe](https://huggingface.co/Undi95/Mistral-11B-v0.1). The `o_proj` and `down_proj` tensors were set to zero in the added layers, making the output exactly identical to Mistral 7B before training.

~Benchmarks look good locally but still evaluating actual usefulness.~
Update: this turned out great! 10/10 would recommend as a training approach.


### Reproducing

This [mergekit](https://github.com/cg123/mergekit) config was used to produce the base model:
```yml
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 24]
  - sources: # add middle layers with residuals scaled to zero
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [8, 24]
        parameters:
          scale:
            - filter: o_proj
              value: 0.0
            - filter: down_proj
              value: 0.0
            - value: 1.0
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [24, 32]
merge_method: passthrough
dtype: bfloat16
```

The axolotl config for fine tuning is available [here](https://huggingface.co/chargoddard/mistral-11b-slimorca/blob/main/axolotl_config.yaml).

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__mistral-11b-slimorca)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |66.12|
|AI2 Reasoning Challenge (25-Shot)|64.25|
|HellaSwag (10-Shot)              |83.81|
|MMLU (5-Shot)                    |63.66|
|TruthfulQA (0-shot)              |54.66|
|Winogrande (5-shot)              |77.98|
|GSM8k (5-shot)                   |52.39|