charisgao's picture
raid_roberta
7582245 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fine_tuned_main_raid_cleaned_poetry
    results: []

fine_tuned_main_raid_cleaned_poetry

This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0628
  • Accuracy: 0.9905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4396 0.0767 100 0.4779 0.8612
0.2322 0.1534 200 0.2148 0.9414
0.2867 0.2301 300 0.2022 0.9603
0.2758 0.3067 400 0.1828 0.9552
0.1543 0.3834 500 0.5250 0.9155
0.2348 0.4601 600 0.1141 0.9733
0.163 0.5368 700 0.1417 0.9733
0.1622 0.6135 800 0.0898 0.9810
0.174 0.6902 900 0.1013 0.9810
0.1398 0.7669 1000 0.3111 0.9241
0.1247 0.8436 1100 0.1722 0.9655
0.1559 0.9202 1200 0.2461 0.9629
0.0987 0.9969 1300 0.1538 0.9741
0.0431 1.0736 1400 0.1137 0.9828
0.0572 1.1503 1500 0.1094 0.9845
0.0509 1.2270 1600 0.1153 0.9836
0.0579 1.3037 1700 0.0736 0.9879
0.0773 1.3804 1800 0.1087 0.9802
0.062 1.4571 1900 0.0890 0.9853
0.0621 1.5337 2000 0.1404 0.9793
0.0324 1.6104 2100 0.0669 0.9888
0.0548 1.6871 2200 0.1057 0.9836
0.0201 1.7638 2300 0.0920 0.9853
0.0614 1.8405 2400 0.0696 0.9897
0.0312 1.9172 2500 0.0628 0.9905
0.0132 1.9939 2600 0.0976 0.9853
0.0108 2.0706 2700 0.0670 0.9914
0.0 2.1472 2800 0.1647 0.9802

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3