--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine_tuned_main_raid results: [] --- # fine_tuned_main_raid This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0711 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.2533 | 0.0139 | 100 | 0.1743 | 0.9663 | | 0.1848 | 0.0277 | 200 | 0.1058 | 0.9768 | | 0.1832 | 0.0416 | 300 | 0.0924 | 0.9796 | | 0.1199 | 0.0554 | 400 | 0.0854 | 0.9813 | | 0.1294 | 0.0693 | 500 | 0.2504 | 0.9471 | | 0.1755 | 0.0832 | 600 | 0.1885 | 0.9646 | | 0.0831 | 0.0970 | 700 | 0.0831 | 0.9855 | | 0.1051 | 0.1109 | 800 | 0.0711 | 0.9843 | | 0.1411 | 0.1248 | 900 | 0.2770 | 0.9637 | | 0.0761 | 0.1386 | 1000 | 0.0922 | 0.9835 | | 0.1178 | 0.1525 | 1100 | 0.2174 | 0.9649 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3