--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine_tuned_raid_cleaned results: [] --- # fine_tuned_raid_cleaned This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1136 - Accuracy: 0.9800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3826 | 0.0139 | 100 | 0.1739 | 0.9443 | | 0.2556 | 0.0277 | 200 | 0.2700 | 0.9408 | | 0.3383 | 0.0416 | 300 | 0.1667 | 0.9529 | | 0.3672 | 0.0554 | 400 | 0.9354 | 0.7975 | | 0.2223 | 0.0693 | 500 | 0.1584 | 0.9673 | | 0.2197 | 0.0832 | 600 | 0.6363 | 0.8793 | | 0.2873 | 0.0970 | 700 | 0.2169 | 0.9462 | | 0.2201 | 0.1109 | 800 | 0.1366 | 0.9621 | | 0.1695 | 0.1248 | 900 | 0.2912 | 0.9554 | | 0.1912 | 0.1386 | 1000 | 0.2287 | 0.9542 | | 0.131 | 0.1525 | 1100 | 0.1136 | 0.9800 | | 0.1764 | 0.1663 | 1200 | 0.1770 | 0.9645 | | 0.1195 | 0.1802 | 1300 | 0.1255 | 0.9755 | | 0.09 | 0.1941 | 1400 | 0.1285 | 0.9758 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3