|
[paths] |
|
train = null |
|
dev = null |
|
init_tok2vec = null |
|
vectors = null |
|
model_source = "training/da_dacy_small_trf2/model-last" |
|
|
|
[system] |
|
gpu_allocator = "pytorch" |
|
seed = 0 |
|
|
|
[nlp] |
|
lang = "da" |
|
pipeline = ["transformer","tagger","morphologizer","trainable_lemmatizer","parser","ner","coref","span_resolver","span_cleaner","entity_linker"] |
|
batch_size = 512 |
|
disabled = [] |
|
before_creation = null |
|
after_creation = null |
|
after_pipeline_creation = null |
|
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} |
|
|
|
[components] |
|
|
|
[components.coref] |
|
factory = "experimental_coref" |
|
span_cluster_prefix = "coref_head_clusters" |
|
|
|
[components.coref.model] |
|
@architectures = "spacy-experimental.Coref.v1" |
|
distance_embedding_size = 20 |
|
dropout = 0.3 |
|
hidden_size = 1024 |
|
depth = 2 |
|
antecedent_limit = 100 |
|
antecedent_batch_size = 512 |
|
|
|
[components.coref.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 0.5 |
|
upstream = "transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.coref.scorer] |
|
@scorers = "spacy-experimental.coref_scorer.v1" |
|
span_cluster_prefix = "coref_head_clusters" |
|
|
|
[components.entity_linker] |
|
factory = "entity_linker" |
|
candidates_batch_size = 1 |
|
entity_vector_length = 768 |
|
generate_empty_kb = {"@misc":"spacy.EmptyKB.v2"} |
|
get_candidates = {"@misc":"spacy.CandidateGenerator.v1"} |
|
get_candidates_batch = {"@misc":"spacy.CandidateBatchGenerator.v1"} |
|
incl_context = true |
|
incl_prior = true |
|
labels_discard = [] |
|
n_sents = 0 |
|
overwrite = true |
|
scorer = {"@scorers":"spacy.entity_linker_scorer.v1"} |
|
threshold = null |
|
use_gold_ents = true |
|
|
|
[components.entity_linker.model] |
|
@architectures = "spacy.EntityLinker.v2" |
|
nO = null |
|
|
|
[components.entity_linker.model.tok2vec] |
|
@architectures = "spacy.HashEmbedCNN.v2" |
|
pretrained_vectors = null |
|
width = 96 |
|
depth = 2 |
|
embed_size = 2000 |
|
window_size = 1 |
|
maxout_pieces = 3 |
|
subword_features = true |
|
|
|
[components.morphologizer] |
|
factory = "morphologizer" |
|
extend = false |
|
overwrite = true |
|
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"} |
|
|
|
[components.morphologizer.model] |
|
@architectures = "spacy.Tagger.v2" |
|
nO = null |
|
normalize = false |
|
|
|
[components.morphologizer.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "transformer" |
|
|
|
[components.ner] |
|
factory = "ner" |
|
incorrect_spans_key = null |
|
moves = null |
|
scorer = {"@scorers":"spacy.ner_scorer.v1"} |
|
update_with_oracle_cut_size = 100 |
|
|
|
[components.ner.model] |
|
@architectures = "spacy.TransitionBasedParser.v2" |
|
state_type = "ner" |
|
extra_state_tokens = false |
|
hidden_width = 64 |
|
maxout_pieces = 2 |
|
use_upper = false |
|
nO = null |
|
|
|
[components.ner.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "transformer" |
|
|
|
[components.parser] |
|
factory = "parser" |
|
learn_tokens = false |
|
min_action_freq = 30 |
|
moves = null |
|
scorer = {"@scorers":"spacy.parser_scorer.v1"} |
|
update_with_oracle_cut_size = 100 |
|
|
|
[components.parser.model] |
|
@architectures = "spacy.TransitionBasedParser.v2" |
|
state_type = "parser" |
|
extra_state_tokens = false |
|
hidden_width = 128 |
|
maxout_pieces = 3 |
|
use_upper = false |
|
nO = null |
|
|
|
[components.parser.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "transformer" |
|
|
|
[components.span_cleaner] |
|
factory = "experimental_span_cleaner" |
|
prefix = "coref_head_clusters" |
|
|
|
[components.span_resolver] |
|
factory = "experimental_span_resolver" |
|
input_prefix = "coref_head_clusters" |
|
output_prefix = "coref_clusters" |
|
|
|
[components.span_resolver.model] |
|
@architectures = "spacy-experimental.SpanResolver.v1" |
|
hidden_size = 1024 |
|
distance_embedding_size = 64 |
|
conv_channels = 4 |
|
window_size = 1 |
|
max_distance = 128 |
|
prefix = "coref_head_clusters" |
|
|
|
[components.span_resolver.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 0.0 |
|
upstream = "transformer" |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
|
|
[components.span_resolver.scorer] |
|
@scorers = "spacy-experimental.span_resolver_scorer.v1" |
|
input_prefix = "coref_head_clusters" |
|
output_prefix = "coref_clusters" |
|
|
|
[components.tagger] |
|
factory = "tagger" |
|
neg_prefix = "!" |
|
overwrite = false |
|
scorer = {"@scorers":"spacy.tagger_scorer.v1"} |
|
|
|
[components.tagger.model] |
|
@architectures = "spacy.Tagger.v2" |
|
nO = null |
|
normalize = false |
|
|
|
[components.tagger.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "transformer" |
|
|
|
[components.trainable_lemmatizer] |
|
factory = "trainable_lemmatizer" |
|
backoff = "orth" |
|
min_tree_freq = 3 |
|
overwrite = false |
|
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"} |
|
top_k = 1 |
|
|
|
[components.trainable_lemmatizer.model] |
|
@architectures = "spacy.Tagger.v2" |
|
nO = null |
|
normalize = false |
|
|
|
[components.trainable_lemmatizer.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
pooling = {"@layers":"reduce_mean.v1"} |
|
upstream = "transformer" |
|
|
|
[components.transformer] |
|
factory = "transformer" |
|
max_batch_items = 4096 |
|
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} |
|
|
|
[components.transformer.model] |
|
@architectures = "spacy-transformers.TransformerModel.v3" |
|
name = "jonfd/electra-small-nordic" |
|
mixed_precision = false |
|
|
|
[components.transformer.model.get_spans] |
|
@span_getters = "spacy-transformers.strided_spans.v1" |
|
window = 128 |
|
stride = 96 |
|
|
|
[components.transformer.model.grad_scaler_config] |
|
|
|
[components.transformer.model.tokenizer_config] |
|
use_fast = true |
|
|
|
[components.transformer.model.transformer_config] |
|
|
|
[corpora] |
|
|
|
[corpora.dev] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.dev} |
|
gold_preproc = false |
|
max_length = 0 |
|
limit = 0 |
|
augmenter = null |
|
|
|
[corpora.train] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.train} |
|
gold_preproc = false |
|
max_length = 0 |
|
limit = 0 |
|
augmenter = null |
|
|
|
[training] |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
dropout = 0.1 |
|
accumulate_gradient = 1 |
|
patience = 1600 |
|
max_epochs = 0 |
|
max_steps = 20000 |
|
eval_frequency = 200 |
|
frozen_components = [] |
|
annotating_components = [] |
|
dev_corpus = "corpora.dev" |
|
train_corpus = "corpora.train" |
|
before_to_disk = null |
|
before_update = null |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_words.v1" |
|
discard_oversize = false |
|
tolerance = 0.2 |
|
get_length = null |
|
|
|
[training.batcher.size] |
|
@schedules = "compounding.v1" |
|
start = 100 |
|
stop = 1000 |
|
compound = 1.001 |
|
t = 0.0 |
|
|
|
[training.logger] |
|
@loggers = "spacy.ConsoleLogger.v1" |
|
progress_bar = false |
|
|
|
[training.optimizer] |
|
@optimizers = "Adam.v1" |
|
beta1 = 0.9 |
|
beta2 = 0.999 |
|
L2_is_weight_decay = true |
|
L2 = 0.01 |
|
grad_clip = 1.0 |
|
use_averages = false |
|
eps = 0.00000001 |
|
learn_rate = 0.001 |
|
|
|
[training.score_weights] |
|
tag_acc = 0.12 |
|
pos_acc = 0.06 |
|
morph_acc = 0.06 |
|
morph_per_feat = null |
|
lemma_acc = 0.12 |
|
dep_uas = 0.06 |
|
dep_las = 0.06 |
|
dep_las_per_type = null |
|
sents_p = null |
|
sents_r = null |
|
sents_f = 0.0 |
|
ents_f = 0.12 |
|
ents_p = 0.0 |
|
ents_r = 0.0 |
|
ents_per_type = null |
|
coref_f = 0.12 |
|
coref_p = null |
|
coref_r = null |
|
span_accuracy = 0.12 |
|
nel_micro_f = 0.12 |
|
nel_micro_r = null |
|
nel_micro_p = null |
|
|
|
[pretraining] |
|
|
|
[initialize] |
|
vectors = ${paths.vectors} |
|
init_tok2vec = ${paths.init_tok2vec} |
|
vocab_data = null |
|
lookups = null |
|
before_init = null |
|
after_init = null |
|
|
|
[initialize.components] |
|
|
|
[initialize.tokenizer] |