File size: 8,065 Bytes
ff9005a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import json
from pathlib import Path
from typing import Dict, List, Literal, Optional, Union, Iterable
from typing_extensions import TypedDict, NotRequired

from spacy.language import Language
from spacy.pipeline import Pipe
from spacy.pipeline.lemmatizer import lemmatizer_score
from spacy.util import ensure_path
from spacy.tokens import Doc, Token

MATCH_ORDER = [
    "upos",
    "Tense",
    "VerbForm",
    "Voice",
    "Case",
    "Gender",
    "Number",
    "Degree",
    "Mood",
    "Person",
    "Aspect",
    "Definite",
    "PronType",
    "Polarity",
    "Poss",
    "Reflex",
]


class TableEntry(TypedDict):
    form: str
    lemma: str
    upos: str
    frequency: int
    Tense: NotRequired[str]
    VerbForm: NotRequired[str]
    Voice: NotRequired[str]
    Case: NotRequired[str]
    Gender: NotRequired[str]
    Number: NotRequired[str]
    Degree: NotRequired[str]
    Mood: NotRequired[str]
    Person: NotRequired[str]
    Aspect: NotRequired[str]
    Definite: NotRequired[str]
    PronType: NotRequired[str]
    Polarity: NotRequired[str]
    Poss: NotRequired[str]
    Reflex: NotRequired[str]


FrequencyTable = Dict[str, List[TableEntry]]

LookupTable = Dict[str, str]


@Language.factory(
    "frequency_lemmatizer",
    assigns=["token.lemma"],
    default_config={
        "overwrite": True,
        "fallback_priority": "lookup",
    },
    default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
    nlp: Language,
    name: str,
    overwrite: bool,
    fallback_priority: Literal["lemma", "lookup"],
):
    return FrequencyLemmatizer(
        nlp=nlp,
        name=name,
        overwrite=overwrite,
        fallback_priority=fallback_priority,
    )  # type: ignore


def max_freq_lemma(entries: List[TableEntry]) -> str:
    """Returns lemma with highest frequency from the given entries."""
    max_index = 0
    n_entries = len(entries)
    for index in range(1, n_entries):
        if entries[index]["frequency"] > entries[max_index]["frequency"]:
            max_index = index
    return entries[max_index]["lemma"]


def match_lemma(
    token_entry: TableEntry, table: FrequencyTable
) -> Optional[str]:
    """Returns a lemma for a token if it
    can be found in the frequency table.
    """
    # Tries to find the entries associated with the token in the table
    match = table.get(token_entry["form"], [])
    if not match:
        return None
    # We go through all the properties to be matched
    for match_property in MATCH_ORDER:
        match_new = [
            entry
            for entry in match
            if entry.get(match_property, "")
            == token_entry.get(match_property, "")
        ]
        if not match_new:
            return max_freq_lemma(entries=match)
        match = match_new
    return max_freq_lemma(entries=match)


def read_json(path: str) -> Dict:
    with open(path) as file:
        res = json.load(file)
    return res


def write_json(object: Dict, path: str) -> None:
    with open(path, "w") as file:
        json.dump(object, file)


class FrequencyLemmatizer(Pipe):
    """
    Part-of-speech and morphology, and frequency
    sensitive rule-based lemmatizer.

    Parameters
    ----------
    overwrite: bool, default True
        Specifies whether the frequency lemmatizer should overwrite
        already assigned lemmas.
    fallback_priority: 'lemma' or 'lookup', default 'lookup'
        Specifies which fallback should have higher priority
            if the lemma is not found in
        the primary table.
    """

    def __init__(
        self,
        nlp: Language,
        name: str = "freq_lemmatizer",
        *,
        overwrite: bool = True,
        fallback_priority: Literal["lemma", "lookup"] = "lookup",
    ):
        self.name = name
        self.overwrite = overwrite
        self.scorer = lemmatizer_score
        self.fallback_priority = fallback_priority

    def initialize(
        self,
        get_examples=None,
        *,
        nlp=None,
        table: Optional[FrequencyTable] = None,
        lookup: Optional[LookupTable] = None,
    ) -> None:
        """Initializes the frequency lemmatizer from given lemma table and lookup.

        Parameters
        ----------
        table: iterable of entries or None, default None
            Iterable of all entries in the lemma table
            with pos tags morph features and frequencies.
        lookup: dict of str to str or None, default None
            Backoff lookup table for simple token-lemma lookup.
        """
        if table is None:
            self.table = None
        else:
            self.table = table
        self.lookup = lookup

    def backoff(self, token: Token) -> str:
        """Gets backoff token based on priority."""
        orth = token.orth_.lower()
        lookup = self.lookup
        in_lookup = (lookup is not None) and (orth in lookup)
        priority = self.fallback_priority
        has_lemma = (token.lemma != 0) and (token.lemma_ != token.orth_)
        if in_lookup:
            if priority == "lookup":
                return lookup[orth]  # type: ignore
            else:
                if has_lemma:
                    return token.lemma_
                else:
                    return token.orth_
        else:
            if has_lemma:
                return token.lemma_
            else:
                return token.orth_

    def lemmatize(self, token: Token) -> str:
        """Lemmatizes token."""
        backoff = self.backoff(token)
        orth = token.orth_.lower()
        # If the table is empty we early return
        if self.table is None:
            return backoff
        # I only add frequency for type compatibility
        token_entry: TableEntry = TableEntry(
            form=orth, upos=token.pos_, frequency=-1, **token.morph.to_dict()
        )
        lemma = match_lemma(token_entry=token_entry, table=self.table)
        if lemma is None:
            return backoff
        else:
            return lemma

    def __call__(self, doc: Doc) -> Doc:
        """Apply the lemmatization to a document."""
        error_handler = self.get_error_handler()
        try:
            for token in doc:
                if self.overwrite or token.lemma == 0:
                    token.lemma_ = self.lemmatize(token)
            return doc
        except Exception as e:
            error_handler(self.name, self, [doc], e)

    def to_disk(
        self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
    ):
        """Save frequency lemmatizer data to a directory."""
        path = ensure_path(path)
        Path(path).mkdir(parents=True, exist_ok=True)
        config = dict(
            overwrite=self.overwrite, fallback_priority=self.fallback_priority
        )
        with open(os.path.join(path, "config.json"), "w") as config_file:
            json.dump(config, config_file)
        if self.table is not None:
            table_path = os.path.join(path, "table.json")
            write_json(self.table, path=table_path)
        if self.lookup is not None:
            lookup_path = os.path.join(path, "lookup.json")
            write_json(self.lookup, path=lookup_path)

    def from_disk(
        self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
    ) -> "FrequencyLemmatizer":
        """Load component from disk."""
        path = ensure_path(path)
        config = read_json(os.path.join(path, "config.json"))
        self.overwrite = config.get("overwrite", self.overwrite)
        self.fallback_priority = config.get(
            "fallback_priority", self.fallback_priority
        )
        try:
            table: Optional[FrequencyTable] = read_json(
                os.path.join(path, "table.json")
            )
        except FileNotFoundError:
            table = None
        try:
            lookup: Optional[LookupTable] = read_json(
                os.path.join(path, "lookup.json")
            )
        except FileNotFoundError:
            lookup = None
        self.initialize(table=table, lookup=lookup)
        return self