grc_odycy_joint_trf / config.cfg
janko's picture
Retrain with spaCy v3.7
93670af verified
[paths]
train = "corpus/joint/train.spacy"
test = "corpus/test.spacy"
dev = "corpus/joint/dev.spacy"
vectors = null
init_tok2vec = null
[system]
gpu_allocator = "pytorch"
seed = 0
[nlp]
lang = "grc"
pipeline = ["transformer","tagger","morphologizer","parser","trainable_lemmatizer","frequency_lemmatizer"]
batch_size = 1024
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
vectors = {"@vectors":"spacy.Vectors.v1"}
[components]
[components.frequency_lemmatizer]
factory = "frequency_lemmatizer"
fallback_priority = "lookup"
overwrite = true
[components.morphologizer]
factory = "morphologizer"
extend = false
label_smoothing = 0.0
overwrite = true
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}
[components.morphologizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.morphologizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 30
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = true
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.tagger]
factory = "tagger"
label_smoothing = 0.0
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}
[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.trainable_lemmatizer]
factory = "trainable_lemmatizer"
backoff = "orth"
min_tree_freq = 1
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 3
[components.trainable_lemmatizer.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false
[components.trainable_lemmatizer.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v3"
name = "pranaydeeps/Ancient-Greek-BERT"
mixed_precision = false
[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
[components.transformer.model.grad_scaler_config]
[components.transformer.model.tokenizer_config]
use_fast = true
[components.transformer.model.transformer_config]
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[training]
accumulate_gradient = 3
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
annotating_components = []
before_to_disk = null
before_update = null
[training.batcher]
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
size = 2000
buffer = 256
get_length = null
[training.logger]
@loggers = "spacy.WandbLogger.v3"
project_name = "homerCy"
remove_config_values = []
model_log_interval = null
log_dataset_dir = null
entity = null
run_name = null
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = true
eps = 0.00000001
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005
[training.score_weights]
tag_acc = 0.21
pos_acc = 0.1
morph_acc = 0.1
morph_per_feat = null
dep_uas = 0.1
dep_las = 0.1
dep_las_per_type = null
sents_p = null
sents_r = null
sents_f = 0.0
lemma_acc = 0.4
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.components.frequency_lemmatizer]
[initialize.components.frequency_lemmatizer.lookup]
@readers = "srsly.read_json.v1"
path = "assets/lemmas/lemma_lookup.json"
[initialize.components.frequency_lemmatizer.table]
@readers = "srsly.read_json.v1"
path = "assets/lemmas/lemma_table.json"
[initialize.tokenizer]