chchen commited on
Commit
ef2828f
1 Parent(s): c10ec6a

Training in progress, step 1500

Browse files
Files changed (2) hide show
  1. adapter_model.safetensors +1 -1
  2. trainer_log.jsonl +51 -0
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b2b32a63befd25f17197326aaace88a9194875999714a10643ff931bbfcd325
3
  size 83945296
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1feac0f46a333d8e55b5fecf98563b6b996e39b0d74064763e92993734de867f
3
  size 83945296
trainer_log.jsonl CHANGED
@@ -100,3 +100,54 @@
100
  {"current_steps": 990, "total_steps": 1770, "loss": 0.7743, "accuracy": 0.6499999761581421, "learning_rate": 2.0369703571452387e-06, "epoch": 1.676545300592718, "percentage": 55.93, "elapsed_time": "2:42:30", "remaining_time": "2:08:02"}
101
  {"current_steps": 1000, "total_steps": 1770, "loss": 0.8098, "accuracy": 0.5687500238418579, "learning_rate": 1.993438056859441e-06, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "2:44:07", "remaining_time": "2:06:22"}
102
  {"current_steps": 1000, "total_steps": 1770, "eval_loss": 0.8548597693443298, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "2:47:22", "remaining_time": "2:08:52"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  {"current_steps": 990, "total_steps": 1770, "loss": 0.7743, "accuracy": 0.6499999761581421, "learning_rate": 2.0369703571452387e-06, "epoch": 1.676545300592718, "percentage": 55.93, "elapsed_time": "2:42:30", "remaining_time": "2:08:02"}
101
  {"current_steps": 1000, "total_steps": 1770, "loss": 0.8098, "accuracy": 0.5687500238418579, "learning_rate": 1.993438056859441e-06, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "2:44:07", "remaining_time": "2:06:22"}
102
  {"current_steps": 1000, "total_steps": 1770, "eval_loss": 0.8548597693443298, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "2:47:22", "remaining_time": "2:08:52"}
103
+ {"current_steps": 1010, "total_steps": 1770, "loss": 0.8768, "accuracy": 0.581250011920929, "learning_rate": 1.9500653531031917e-06, "epoch": 1.710414902624894, "percentage": 57.06, "elapsed_time": "2:49:03", "remaining_time": "2:07:12"}
104
+ {"current_steps": 1020, "total_steps": 1770, "loss": 0.8406, "accuracy": 0.606249988079071, "learning_rate": 1.9068659108055117e-06, "epoch": 1.7273497036409822, "percentage": 57.63, "elapsed_time": "2:50:47", "remaining_time": "2:05:35"}
105
+ {"current_steps": 1030, "total_steps": 1770, "loss": 0.7414, "accuracy": 0.6499999761581421, "learning_rate": 1.863853340307962e-06, "epoch": 1.7442845046570703, "percentage": 58.19, "elapsed_time": "2:52:26", "remaining_time": "2:03:53"}
106
+ {"current_steps": 1040, "total_steps": 1770, "loss": 0.8196, "accuracy": 0.637499988079071, "learning_rate": 1.8210411930766019e-06, "epoch": 1.7612193056731584, "percentage": 58.76, "elapsed_time": "2:54:04", "remaining_time": "2:02:11"}
107
+ {"current_steps": 1050, "total_steps": 1770, "loss": 0.7991, "accuracy": 0.6187499761581421, "learning_rate": 1.7784429574324803e-06, "epoch": 1.7781541066892466, "percentage": 59.32, "elapsed_time": "2:55:43", "remaining_time": "2:00:29"}
108
+ {"current_steps": 1060, "total_steps": 1770, "loss": 0.8021, "accuracy": 0.612500011920929, "learning_rate": 1.7360720543020327e-06, "epoch": 1.7950889077053345, "percentage": 59.89, "elapsed_time": "2:57:19", "remaining_time": "1:58:46"}
109
+ {"current_steps": 1070, "total_steps": 1770, "loss": 0.8344, "accuracy": 0.606249988079071, "learning_rate": 1.6939418329887042e-06, "epoch": 1.8120237087214224, "percentage": 60.45, "elapsed_time": "2:58:58", "remaining_time": "1:57:05"}
110
+ {"current_steps": 1080, "total_steps": 1770, "loss": 0.8499, "accuracy": 0.5, "learning_rate": 1.6520655669671467e-06, "epoch": 1.8289585097375105, "percentage": 61.02, "elapsed_time": "3:00:33", "remaining_time": "1:55:21"}
111
+ {"current_steps": 1090, "total_steps": 1770, "loss": 0.8634, "accuracy": 0.5687500238418579, "learning_rate": 1.610456449701294e-06, "epoch": 1.8458933107535986, "percentage": 61.58, "elapsed_time": "3:02:06", "remaining_time": "1:53:36"}
112
+ {"current_steps": 1100, "total_steps": 1770, "loss": 0.8794, "accuracy": 0.606249988079071, "learning_rate": 1.5691275904876545e-06, "epoch": 1.8628281117696868, "percentage": 62.15, "elapsed_time": "3:03:39", "remaining_time": "1:51:51"}
113
+ {"current_steps": 1110, "total_steps": 1770, "loss": 0.8213, "accuracy": 0.543749988079071, "learning_rate": 1.5280920103251235e-06, "epoch": 1.879762912785775, "percentage": 62.71, "elapsed_time": "3:05:14", "remaining_time": "1:50:08"}
114
+ {"current_steps": 1120, "total_steps": 1770, "loss": 0.8642, "accuracy": 0.625, "learning_rate": 1.4873626378126015e-06, "epoch": 1.8966977138018628, "percentage": 63.28, "elapsed_time": "3:06:49", "remaining_time": "1:48:25"}
115
+ {"current_steps": 1130, "total_steps": 1770, "loss": 0.8402, "accuracy": 0.550000011920929, "learning_rate": 1.446952305075738e-06, "epoch": 1.913632514817951, "percentage": 63.84, "elapsed_time": "3:08:23", "remaining_time": "1:46:41"}
116
+ {"current_steps": 1140, "total_steps": 1770, "loss": 0.8842, "accuracy": 0.59375, "learning_rate": 1.406873743724065e-06, "epoch": 1.9305673158340388, "percentage": 64.41, "elapsed_time": "3:10:00", "remaining_time": "1:45:00"}
117
+ {"current_steps": 1150, "total_steps": 1770, "loss": 0.8142, "accuracy": 0.5687500238418579, "learning_rate": 1.3671395808397898e-06, "epoch": 1.947502116850127, "percentage": 64.97, "elapsed_time": "3:11:41", "remaining_time": "1:43:21"}
118
+ {"current_steps": 1160, "total_steps": 1770, "loss": 0.8381, "accuracy": 0.550000011920929, "learning_rate": 1.3277623349995418e-06, "epoch": 1.964436917866215, "percentage": 65.54, "elapsed_time": "3:13:12", "remaining_time": "1:41:35"}
119
+ {"current_steps": 1170, "total_steps": 1770, "loss": 0.863, "accuracy": 0.5375000238418579, "learning_rate": 1.2887544123302781e-06, "epoch": 1.9813717188823032, "percentage": 66.1, "elapsed_time": "3:14:44", "remaining_time": "1:39:52"}
120
+ {"current_steps": 1180, "total_steps": 1770, "loss": 0.8289, "accuracy": 0.518750011920929, "learning_rate": 1.2501281026006393e-06, "epoch": 1.9983065198983911, "percentage": 66.67, "elapsed_time": "3:16:14", "remaining_time": "1:38:07"}
121
+ {"current_steps": 1190, "total_steps": 1770, "loss": 0.8514, "accuracy": 0.550000011920929, "learning_rate": 1.2118955753489523e-06, "epoch": 2.015241320914479, "percentage": 67.23, "elapsed_time": "3:17:51", "remaining_time": "1:36:26"}
122
+ {"current_steps": 1200, "total_steps": 1770, "loss": 0.8299, "accuracy": 0.6312500238418579, "learning_rate": 1.1740688760491189e-06, "epoch": 2.032176121930567, "percentage": 67.8, "elapsed_time": "3:19:27", "remaining_time": "1:34:44"}
123
+ {"current_steps": 1210, "total_steps": 1770, "loss": 0.8056, "accuracy": 0.59375, "learning_rate": 1.1366599223155847e-06, "epoch": 2.0491109229466553, "percentage": 68.36, "elapsed_time": "3:21:03", "remaining_time": "1:33:02"}
124
+ {"current_steps": 1220, "total_steps": 1770, "loss": 0.8161, "accuracy": 0.59375, "learning_rate": 1.0996805001486067e-06, "epoch": 2.0660457239627434, "percentage": 68.93, "elapsed_time": "3:22:39", "remaining_time": "1:31:21"}
125
+ {"current_steps": 1230, "total_steps": 1770, "loss": 0.8569, "accuracy": 0.5375000238418579, "learning_rate": 1.0631422602209608e-06, "epoch": 2.0829805249788316, "percentage": 69.49, "elapsed_time": "3:24:17", "remaining_time": "1:29:41"}
126
+ {"current_steps": 1240, "total_steps": 1770, "loss": 0.8939, "accuracy": 0.5375000238418579, "learning_rate": 1.027056714207319e-06, "epoch": 2.0999153259949197, "percentage": 70.06, "elapsed_time": "3:26:00", "remaining_time": "1:28:03"}
127
+ {"current_steps": 1250, "total_steps": 1770, "loss": 0.7394, "accuracy": 0.6000000238418579, "learning_rate": 9.914352311573838e-07, "epoch": 2.116850127011008, "percentage": 70.62, "elapsed_time": "3:27:35", "remaining_time": "1:26:21"}
128
+ {"current_steps": 1260, "total_steps": 1770, "loss": 0.8032, "accuracy": 0.59375, "learning_rate": 9.562890339139877e-07, "epoch": 2.1337849280270955, "percentage": 71.19, "elapsed_time": "3:29:09", "remaining_time": "1:24:39"}
129
+ {"current_steps": 1270, "total_steps": 1770, "loss": 0.8238, "accuracy": 0.6000000238418579, "learning_rate": 9.216291955772374e-07, "epoch": 2.1507197290431836, "percentage": 71.75, "elapsed_time": "3:30:41", "remaining_time": "1:22:56"}
130
+ {"current_steps": 1280, "total_steps": 1770, "loss": 0.774, "accuracy": 0.550000011920929, "learning_rate": 8.874666360158457e-07, "epoch": 2.167654530059272, "percentage": 72.32, "elapsed_time": "3:32:21", "remaining_time": "1:21:17"}
131
+ {"current_steps": 1290, "total_steps": 1770, "loss": 0.7277, "accuracy": 0.581250011920929, "learning_rate": 8.538121184267315e-07, "epoch": 2.18458933107536, "percentage": 72.88, "elapsed_time": "3:33:53", "remaining_time": "1:19:35"}
132
+ {"current_steps": 1300, "total_steps": 1770, "loss": 0.8604, "accuracy": 0.5562499761581421, "learning_rate": 8.206762459439907e-07, "epoch": 2.201524132091448, "percentage": 73.45, "elapsed_time": "3:35:27", "remaining_time": "1:17:53"}
133
+ {"current_steps": 1310, "total_steps": 1770, "loss": 0.8926, "accuracy": 0.606249988079071, "learning_rate": 7.880694582982898e-07, "epoch": 2.218458933107536, "percentage": 74.01, "elapsed_time": "3:37:04", "remaining_time": "1:16:13"}
134
+ {"current_steps": 1320, "total_steps": 1770, "loss": 0.8363, "accuracy": 0.53125, "learning_rate": 7.560020285277401e-07, "epoch": 2.235393734123624, "percentage": 74.58, "elapsed_time": "3:38:37", "remaining_time": "1:14:31"}
135
+ {"current_steps": 1330, "total_steps": 1770, "loss": 0.8534, "accuracy": 0.53125, "learning_rate": 7.244840597412956e-07, "epoch": 2.252328535139712, "percentage": 75.14, "elapsed_time": "3:40:13", "remaining_time": "1:12:51"}
136
+ {"current_steps": 1340, "total_steps": 1770, "loss": 0.8464, "accuracy": 0.5625, "learning_rate": 6.935254819356796e-07, "epoch": 2.2692633361558, "percentage": 75.71, "elapsed_time": "3:41:48", "remaining_time": "1:11:10"}
137
+ {"current_steps": 1350, "total_steps": 1770, "loss": 0.7824, "accuracy": 0.6187499761581421, "learning_rate": 6.631360488668662e-07, "epoch": 2.2861981371718882, "percentage": 76.27, "elapsed_time": "3:43:23", "remaining_time": "1:09:29"}
138
+ {"current_steps": 1360, "total_steps": 1770, "loss": 0.8656, "accuracy": 0.581250011920929, "learning_rate": 6.333253349770672e-07, "epoch": 2.3031329381879764, "percentage": 76.84, "elapsed_time": "3:44:57", "remaining_time": "1:07:49"}
139
+ {"current_steps": 1370, "total_steps": 1770, "loss": 0.7993, "accuracy": 0.606249988079071, "learning_rate": 6.041027323782364e-07, "epoch": 2.3200677392040645, "percentage": 77.4, "elapsed_time": "3:46:34", "remaining_time": "1:06:09"}
140
+ {"current_steps": 1380, "total_steps": 1770, "loss": 0.81, "accuracy": 0.6312500238418579, "learning_rate": 5.754774478929969e-07, "epoch": 2.337002540220152, "percentage": 77.97, "elapsed_time": "3:48:13", "remaining_time": "1:04:30"}
141
+ {"current_steps": 1390, "total_steps": 1770, "loss": 0.7742, "accuracy": 0.65625, "learning_rate": 5.474585001539634e-07, "epoch": 2.3539373412362403, "percentage": 78.53, "elapsed_time": "3:49:47", "remaining_time": "1:02:49"}
142
+ {"current_steps": 1400, "total_steps": 1770, "loss": 0.8399, "accuracy": 0.5687500238418579, "learning_rate": 5.200547167623424e-07, "epoch": 2.3708721422523285, "percentage": 79.1, "elapsed_time": "3:51:23", "remaining_time": "1:01:09"}
143
+ {"current_steps": 1410, "total_steps": 1770, "loss": 0.8193, "accuracy": 0.6312500238418579, "learning_rate": 4.932747315067271e-07, "epoch": 2.3878069432684166, "percentage": 79.66, "elapsed_time": "3:53:02", "remaining_time": "0:59:29"}
144
+ {"current_steps": 1420, "total_steps": 1770, "loss": 0.8029, "accuracy": 0.6499999761581421, "learning_rate": 4.6712698164294553e-07, "epoch": 2.4047417442845047, "percentage": 80.23, "elapsed_time": "3:54:41", "remaining_time": "0:57:50"}
145
+ {"current_steps": 1430, "total_steps": 1770, "loss": 0.8124, "accuracy": 0.6187499761581421, "learning_rate": 4.41619705235842e-07, "epoch": 2.421676545300593, "percentage": 80.79, "elapsed_time": "3:56:20", "remaining_time": "0:56:11"}
146
+ {"current_steps": 1440, "total_steps": 1770, "loss": 0.8596, "accuracy": 0.612500011920929, "learning_rate": 4.167609385637961e-07, "epoch": 2.438611346316681, "percentage": 81.36, "elapsed_time": "3:57:56", "remaining_time": "0:54:31"}
147
+ {"current_steps": 1450, "total_steps": 1770, "loss": 0.817, "accuracy": 0.518750011920929, "learning_rate": 3.9255851358683567e-07, "epoch": 2.4555461473327687, "percentage": 81.92, "elapsed_time": "3:59:34", "remaining_time": "0:52:52"}
148
+ {"current_steps": 1460, "total_steps": 1770, "loss": 0.8001, "accuracy": 0.637499988079071, "learning_rate": 3.690200554791082e-07, "epoch": 2.472480948348857, "percentage": 82.49, "elapsed_time": "4:01:08", "remaining_time": "0:51:12"}
149
+ {"current_steps": 1470, "total_steps": 1770, "loss": 0.8201, "accuracy": 0.625, "learning_rate": 3.461529802265079e-07, "epoch": 2.489415749364945, "percentage": 83.05, "elapsed_time": "4:02:45", "remaining_time": "0:49:32"}
150
+ {"current_steps": 1480, "total_steps": 1770, "loss": 0.8599, "accuracy": 0.5375000238418579, "learning_rate": 3.2396449229020883e-07, "epoch": 2.506350550381033, "percentage": 83.62, "elapsed_time": "4:04:21", "remaining_time": "0:47:52"}
151
+ {"current_steps": 1490, "total_steps": 1770, "loss": 0.8252, "accuracy": 0.574999988079071, "learning_rate": 3.024615823368371e-07, "epoch": 2.523285351397121, "percentage": 84.18, "elapsed_time": "4:05:47", "remaining_time": "0:46:11"}
152
+ {"current_steps": 1500, "total_steps": 1770, "loss": 0.8135, "accuracy": 0.581250011920929, "learning_rate": 2.8165102503600716e-07, "epoch": 2.5402201524132093, "percentage": 84.75, "elapsed_time": "4:07:23", "remaining_time": "0:44:31"}
153
+ {"current_steps": 1500, "total_steps": 1770, "eval_loss": 0.8505691885948181, "epoch": 2.5402201524132093, "percentage": 84.75, "elapsed_time": "4:10:38", "remaining_time": "0:45:06"}