File size: 44,404 Bytes
edfb009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "695a0d97-6b1d-4448-b16c-3ba95bb60c30",
   "metadata": {},
   "source": [
    "# If these install, restart the kernal so it has access to the recently installed files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "22de09b1-3c40-4195-8b5a-926d5391313f",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip3 install --user transformers datasets evaluate rouge_score\n",
    "!pip3 install --user datasets\n",
    "!pip install --user transformers[torch]\n",
    "!pip install --user accelerate -U\n",
    "!pip install --user wandb"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e1687d09-6b14-47fb-9819-dbed0d8ae3b3",
   "metadata": {},
   "source": [
    "# Logging into huggingface hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f2f10d5e-9655-4554-abb0-511044640854",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "85b2b1cf7e174dc4b50a3ff3a768b282",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "05b9e8c7-b52d-4a1f-8464-fb5f7e78e579",
   "metadata": {},
   "source": [
    "# Naming the WANDB project and notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "6b4bad30-76c7-49dc-b563-a27ed9465eee",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m WANDB_NOTEBOOK_NAME should be a path to a notebook file, couldn't find ./TermProject.\n",
      "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mtah6k\u001b[0m (\u001b[33mcheaptrix\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "wandb version 0.16.6 is available!  To upgrade, please run:\n",
       " $ pip install wandb --upgrade"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "Tracking run with wandb version 0.16.2"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "Run data is saved locally in <code>/scratch/user/u.th161689/AI_NLP/TermProject/wandb/run-20240403_223123-2h8q76y0</code>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "Syncing run <strong><a href='https://wandb.ai/cheaptrix/California_bills_summary/runs/2h8q76y0' target=\"_blank\">swift-planet-1</a></strong> to <a href='https://wandb.ai/cheaptrix/California_bills_summary' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       " View project at <a href='https://wandb.ai/cheaptrix/California_bills_summary' target=\"_blank\">https://wandb.ai/cheaptrix/California_bills_summary</a>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       " View run at <a href='https://wandb.ai/cheaptrix/California_bills_summary/runs/2h8q76y0' target=\"_blank\">https://wandb.ai/cheaptrix/California_bills_summary/runs/2h8q76y0</a>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/cheaptrix/California_bills_summary/runs/2h8q76y0?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
      ],
      "text/plain": [
       "<wandb.sdk.wandb_run.Run at 0x14c5f8617710>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Must set the global variable WANDB_NOTEBOOK_NAME to the name of the notebook\n",
    "import os\n",
    "import wandb\n",
    "# Name is found through the os incase the name changes\n",
    "# WANDB_NOTEBOOK_NAME = os.path.basename(os.getcwd())\n",
    "notebook_name = str(os.path.basename(os.getcwd()))\n",
    "os.environ[\"WANDB_NOTEBOOK_NAME\"] = \"./\" + notebook_name\n",
    "os.environ[\"WANDB_PROJECT\"] = \"California_bills_summary\"\n",
    "wandb.init(project='California_bills_summary') "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "69fbba70-2fb2-47c9-abc9-1824a3ab10d7",
   "metadata": {},
   "source": [
    "# Importing and loading the California Bills dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "fd3b62f1-5bd2-44ff-87f3-1d48ccb74459",
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "billsum = load_dataset(\"billsum\", split=\"ca_test\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c87b4f7-bdbd-4869-8975-609373000ab0",
   "metadata": {},
   "source": [
    "# Splitting the data to training and testing split"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "9f08c14e-820e-497d-a979-6332bce67bc1",
   "metadata": {},
   "outputs": [],
   "source": [
    "billsum = billsum.train_test_split(test_size=0.2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9949be74-ed88-49a8-8465-8290af7abe6f",
   "metadata": {},
   "source": [
    "# Example of data within the training set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "2f7551a5-631d-4de3-afb7-99d923d18ccd",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'text': \"The people of the State of California do enact as follows:\\n\\n\\nSECTION 1.\\nThe Legislature finds and declares as follows:\\n(a) On February 27, 2014, the President of the United States launched the My Brother’s Keeper initiative to address persistent opportunity gaps faced by boys and young men of color and to ensure that all young people can reach their full potential.\\n(b) The My Brother’s Keeper Task Force recognizes that challenges facing boys and young men of color affect others as well and that it is important to break down barriers wherever they exist and to identify means of creating ladders of opportunity for all.\\n(c) The My Brother’s Keeper Task Force was established to develop a coordinated federal effort to significantly improve the expected life outcomes for boys and young men of color, including Black Americans, Hispanic Americans, and Native Americans, and to improve their contributions to the nation’s prosperity, so that all youth have an equal opportunity at achieving the American dream.\\n(d) The My Brother’s Keeper Task Force noted that significant diversity exists within and among boys and men of color as a segment of the population. Differences of language status, income, disability, sexual orientation, and many other factors influence the identity and experience of these young people, just as with any other population.\\n(e) My Brother’s Keeper is focused on the following milestones: (1) getting a healthy start and entering school ready to learn; (2) reading at grade level by third grade; (3) graduating from high school ready for college and career; (4) completing postsecondary education or training; (5) successfully entering the workforce; and (6) keeping kids on track and giving them second chances.\\n(f) The My Brother’s Keeper Task Force Report to the President (May 2014) cites numerous areas in which boys and men of color consistently experience disproportionately negative outcomes. These areas include living in poverty, living without a male parent in the household, high school dropout rates, unemployment, death by homicide, and imprisonment.\\n(g) The My Brother’s Keeper Task Force has identified initial recommendations and areas of opportunity at each of these key milestones or “focus areas.” The task force has also identified several cross-cutting areas of opportunity that span all focus areas.\\n(h) The recommendations in the My Brother’s Keeper Task Force Report to the President inform and influence California policy and California’s compliance with those recommendations makes the state more competitive for federal funding and strengthens its economic competitiveness.\\n(i) Our state’s future prosperity and health depend on all Californians having a fair chance to thrive and succeed. One of the best investments we can make is to be certain we do everything possible to help young people become healthy, productive adults. As California becomes more diverse, we must nurture and harness the talents, skills, and hopes of young people of color — boys and young men in particular.\\n(j) The Department of Finance projects California’s population of boys and men of color will increasingly represent a growing percentage of the state's male population, reaching close to 80 percent for boys and men of color compared to 20 percent for non-Hispanic white males by 2050.\\n(k) The Assembly Select Committee on the Status of Boys and Men of Color in California has recognized that boys and young men of color are in jeopardy, and this poses a serious threat to California’s economic strength and competitiveness.\\n(l) The Assembly Select Committee on the Status of Boys and Men of Color’s policy framework emphasizes the following issues: (1) health and safety; (2) education; (3) juvenile justice; (4) employment and wealth; and (5) youth development. Related issues that have been recommended for expansion of the committee’s work include higher education, immigration, and housing.\\n(m) Community and youth leaders from across the state have taken a significant interest in partnering with government and systems leaders through the Alliance for Boys and Men of Color in order to improve the health and success of our state’s young people of color.\\nSEC. 2.\\nChapter 3.4 (commencing with Section 8265) is added to Division 1 of Title 2 of the Government Code, to read:\\nCHAPTER  3.4. Interagency Task Force on the Status of Boys and Men of Color\\n8265.\\n(a) (1) There is in state government the Interagency Task Force on the Status of Boys and Men of Color, which shall serve as a support mechanism for department, agency, and systems leaders by taking coordinated action in meeting the myriad of challenges facing boys and men of color, and assisting the respective departments and agencies in more successfully improving life outcomes for this population.\\n(2) It is the intent of the Legislature that the task force include participation from a core set of department, agency, and systems leaders with discretion and responsibility for policy areas of primary importance to the fulfillment of the Final Report and Policy Platform for State Action (2012–18) of the Assembly Select Committee on the Status of Boys and Men in California.\\n(b) The task force shall be comprised of the following 20 members:\\n(1) One Member of the Senate, appointed by the Senate Committee on Rules, and one Member of the Assembly, appointed by the Speaker of the Assembly, as ex officio, nonvoting members, and to the extent that participation is not incompatible with their position as Members of the Legislature.\\n(2) The Superintendent of Public Instruction, or his or her designee.\\n(3) The President of the University of California, or his or her designee.\\n(4) The Chancellor of the California State University, or his or her designee.\\n(5) The Chancellor of the California Community Colleges, or his or her designee.\\n(6) The Secretary of California Health and Human Services, or his or her designee.\\n(7) The State Public Health Officer, or his or her designee.\\n(8) The Deputy Director of the Office of Health Equity, or his or her designee.\\n(9) The Secretary of Business, Consumer Services, and Housing, or his or her designee.\\n(10) The Secretary of Labor and Workforce Development, or his or her designee.\\n(11) The Director of Employment Development, or his or her designee.\\n(12) The Executive Director of the California Workforce Investment Board, or his or her designee.\\n(13) The Chair of the California Workforce Investment Board, or his or her designee.\\n(14) The Secretary of Transportation, or his or her designee.\\n(15) The Director of Finance, or his or her designee.\\n(16) The Attorney General, or his or her designee.\\n(17) The Secretary of the Department of Corrections and Rehabilitation, or his or her designee.\\n(18) The Chair of the Board of State and Community Corrections, or his or her designee.\\n(19) The Chief Justice of California, or his or her designee.\\n(c) The task force shall elect one of its members to serve as chair of the task force. Desirable qualifications for the position of chair shall include, but not be limited to, all of the following:\\n(1) He or she should possess a broad and deep understanding of the issues facing boys and men of color.\\n(2) He or she should be a political appointee with a senior leadership role either leading a department or agency or managing a significant and pertinent body of work.\\n(3) He or she should have a demonstrated strong and positive working relationship with the members of the Legislature and the Governor.\\n(d) All members of the task force shall hold office until the appointment of their successors.\\n8266.\\nMeetings of the task force shall be subject to the Bagley-Keene Open Meetings Act (Article 9 (commencing with Section 11120) of Chapter 1 of Part 1 of Division 3).\\n8267.\\nThe task force shall have the powers and authority necessary to carry out the duties imposed upon it by this chapter, including, but not limited to, all of the following:\\n(a) To employ any administrative, technical, or other personnel necessary for the performance of its powers and duties.\\n(b) To hold hearings, make and sign any agreements, and to do or perform any acts that may be necessary, desirable, or proper to carry out the purposes of this chapter.\\n(c) To cooperate with, and secure the cooperation of, any department, division, board, bureau, commission, or other agency of the state to facilitate the task force properly to carry out its powers and duties.\\n(d) To appoint advisers or advisory committees from time to time when the task force determines that the experience or expertise of the advisers or advisory committees is needed for projects of the task force. Section 11009 shall apply to these advisers or advisory committees.\\n(e) To accept any federal funds granted, by act of Congress or by executive order, for all or any of the purposes of this chapter.\\n(f) To accept any gifts, donations, grants, or bequests for all or any of the purposes of this chapter.\\n8268.\\n(a) Within six months after the effective date of this chapter, the task force shall complete all of the following requirements:\\n(1) Assess existing department and agency programs that align with the priorities outlined in the May 2014 My Brother’s Keeper Task Force Report to the President. Based on this assessment, the task force shall identify state opportunities to partner and coordinate with the work of the federal My Brother’s Keeper Task Force.\\n(2) Assess the Governor’s Budget to identify those areas in which the budget priorities are in alignment with the objectives of the task force.\\n(3) Review the action plan of the Final Report and Policy Platform for State Action (2012–18) of the Assembly Select Committee on the Status of Boys and Men of Color in California, and identify ambitious state goals for boys and men of color, as well as barriers to achieving desired results.\\n(b) Upon completion of the requirements in subdivision (a), the long-term, ongoing responsibilities of the task force shall include all of the following:\\n(1) Assessing state policies, regulations, and programs with respect to boys and men of color, and the development of proven and promising strategies to enhance positive outcomes and eliminate or mitigate negative outcomes.\\n(2) Preparing population and agency-specific data on boys and men of color in California. The task force shall aggregate the data and make it publicly available in a manner that does not reveal personally identifiable information or otherwise conflict with federal or state privacy laws.\\n(3) Serving as a liaison to departments and agencies by ensuring engagement and partnership with other public, nonprofit, and philanthropic entities among the various member agencies and with the task force as a whole, and recommend ways to strengthen partnerships with external leaders advancing strategies relevant to boys and men of color.\\n(c) The first meeting of the task force shall be convened on or before January 31, 2016. Subsequently, the task force shall convene on no less than a quarterly basis to assess progress on its ongoing responsibilities pursuant to subdivision (b), and to provide support and ensure coordination across agencies.\\n(d) (1) Notwithstanding Section 10231.5, the task force shall prepare and submit to the Legislature an annual report on department and agency findings pursuant to this section. The task force shall also report these findings at the Assembly Select Committee on the Status of Boys and Men of Color in California’s annual hearing on the status of advancing the committee priorities and policies.\\n(2) A report submitted pursuant to this subdivision shall be submitted in compliance with Section 9795.\\n8269.\\nWith respect to its duties under Section 8268, the task force shall be an advisory body only, and there shall be no right or obligation on the part of the state, or the parties meeting and conferring, to implement the findings of the task force without further legislation that specifically authorizes that the evaluations, determinations, and findings of the task force be implemented.\\n8269.5\\nThe Boys and Men of Color Task Force Fund is hereby created as a fund in the State Treasury to carry out this chapter in support of the task force, upon appropriation by the Legislature. Subject to the approval of the Department of Finance, all moneys collected or received by the task force from gifts, bequests, or donations shall be deposited in the State Treasury to the credit of the Boys and Men of Color Task Force Fund in accordance with the terms of the gift or donation from which the moneys are derived and in accordance with Sections 8647, 11005, 11005.1, and 16302 of the Government Code.\\n8269.7.\\nThis chapter shall remain in effect only until January 1, 2026, and as of that date is repealed.\",\n",
       " 'summary': 'The California Constitution prohibits a person from being deprived of life, liberty, or property without due process of law, or from being denied equal protection of the laws. The United States Constitution prohibits a state from denying to any person within its jurisdiction the equal protection of the laws. Existing law establishes various advisory boards and commissions in state government with specified duties and responsibilities.\\nThe federal My Brother’s Keeper Initiative, launched by the President of the United States in February 2014, required the establishment of the My Brother’s Keeper Task Force, an interagency effort to improve the expected educational and life outcomes for and address the persistent opportunity gaps faced by boys and young men of color in the United States.\\nThis bill would establish until January 1, 2026, the Interagency Task Force on the Status of Boys and Men of Color, a multiagency advisory body that would serve as a support mechanism for department agency and systems leaders by taking coordinated action in meeting the myriad of challenges facing boys and men of color in California, and assisting the respective departments and agencies in more successfully improving life outcomes for this population. The membership of the task force would include members of the Legislature, as well as representatives of specified agencies, departments, and private entities. The bill would set forth the initial and ongoing responsibilities of the task force, including, among others, an assessment of state program alignment with the objectives of the My Brother’s Keeper program, review the action plan of a specified final report of the Assembly Select Committee on the Status of Boys and Men of Color in California, and an assessment of the development of strategies to enhance positive outcomes and eliminate or mitigate negative outcomes for boys and men of color in the state. The bill would establish the Boys and Men of Color Task Force Fund, which would be subject to appropriation by the Legislature, to carry out the bill’s requirements in support of the task force, upon appropriation by the Legislature. The bill would authorize the task force to accept federal funds, gifts, donations, grants, or bequests for all or any of its purposes.',\n",
       " 'title': 'An act to add and repeal Chapter 3.4 (commencing with Section 8265) to Division 1 of Title 2 of the Government Code, relating to state government.'}"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "billsum[\"train\"][0]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c2e2c67-3d0b-4d4b-b3b6-e6d9afb60c8a",
   "metadata": {},
   "source": [
    "# Load T5 tokenizer to process text and summary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "b3d4454e-e7f3-4020-9ecc-4c692c6da5c6",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "checkpoint = \"google-t5/t5-small\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(checkpoint)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "15e4537b-4a72-434a-8af7-1cef702581d0",
   "metadata": {},
   "source": [
    "# Perprocessing Function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "2feec165-87ed-4258-a332-14c3b7dd9867",
   "metadata": {},
   "outputs": [],
   "source": [
    "prefix = \"summarize: \"\n",
    "\n",
    "\n",
    "def preprocess_function(examples):\n",
    "    inputs = [prefix + doc for doc in examples[\"text\"]]\n",
    "    model_inputs = tokenizer(inputs, max_length=1024, truncation=True)\n",
    "\n",
    "    labels = tokenizer(text_target=examples[\"summary\"], max_length=128, truncation=True)\n",
    "\n",
    "    model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
    "    return model_inputs"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "814f0888-e5c0-4841-9084-ed4f6762ecdd",
   "metadata": {},
   "source": [
    "# Tokenize the dataset using the map function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "65c755b9-33ae-4d95-b0d2-b7b7950f4f71",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "24949b7ce3e54b5689d7d42a928d1d49",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/989 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8d68949efc8c4ef68bbbffeaac9f1aae",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/248 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "tokenized_billsum = billsum.map(preprocess_function, batched=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "294ec0e7-5120-4c13-9517-6e4407dd12e7",
   "metadata": {},
   "source": [
    "# Creating a batch of examples using DataCollatorForSeq2Seq with dynamic padding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "a1e9d07d-7cbf-46c2-87c6-9ebc97fcbfcf",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-04-03 22:31:45.588933: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2024-04-03 22:31:45.622854: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "2024-04-03 22:31:45.622885: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "2024-04-03 22:31:45.622911: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
      "2024-04-03 22:31:45.629431: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2024-04-03 22:31:46.665693: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
     ]
    }
   ],
   "source": [
    "from transformers import DataCollatorForSeq2Seq\n",
    "\n",
    "data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bd435fc8-af8b-419b-b41b-384f6b412119",
   "metadata": {},
   "source": [
    "# Importing the evaluator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "bc7159a1-3997-47bd-8d17-48c2e09f7ace",
   "metadata": {},
   "outputs": [],
   "source": [
    "import evaluate\n",
    "\n",
    "rouge = evaluate.load(\"rouge\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "11f1979d-91e3-414f-b76b-36034e97b8b0",
   "metadata": {},
   "source": [
    "# Function that passes predictions and labels to compute to calculate the Rouge metric."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "e301045f-eb8d-4c2d-b2f5-59acf2f053b0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_metrics(eval_pred):\n",
    "    predictions, labels = eval_pred\n",
    "    decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)\n",
    "    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n",
    "    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
    "\n",
    "    result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)\n",
    "\n",
    "    prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]\n",
    "    result[\"gen_len\"] = np.mean(prediction_lens)\n",
    "\n",
    "    return {k: round(v, 4) for k, v in result.items()}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e3833f68-20da-4343-88c6-4b5c144bfb7c",
   "metadata": {},
   "source": [
    "# Training - Loading T5 with AutoModelForSeq2SeqLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "8a9100fb-4ebe-469d-a1a3-b0a00c54528a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer\n",
    "\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9722c5f5-a9ed-44d1-b677-9fe558890218",
   "metadata": {},
   "source": [
    "# Defining the training hyperparameters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "e9d5eb20-6e52-44c7-aa09-5ad6c09576d9",
   "metadata": {},
   "outputs": [],
   "source": [
    "training_args = Seq2SeqTrainingArguments(\n",
    "    output_dir=\"California_bills_summary\",\n",
    "    evaluation_strategy=\"epoch\",\n",
    "    learning_rate=2e-5,\n",
    "    per_device_train_batch_size=16,\n",
    "    per_device_eval_batch_size=16,\n",
    "    weight_decay=0.01,\n",
    "    save_total_limit=3,\n",
    "    num_train_epochs=4,\n",
    "    predict_with_generate=True,\n",
    "    fp16=True,\n",
    "    push_to_hub=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa5635ee-8d6a-45ce-8976-90df52eacd8a",
   "metadata": {},
   "source": [
    "# Passing the arguments, model, dataset, tokenizer, data collator, and compute_metrics function to Seq2SeqTrainer for training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "3476e539-1f86-41b2-beec-f9441406a692",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/u.th161689/.local/lib/python3.11/site-packages/accelerate/accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
      "dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False)\n",
      "  warnings.warn(\n",
      "Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n"
     ]
    }
   ],
   "source": [
    "trainer = Seq2SeqTrainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_billsum[\"train\"],\n",
    "    eval_dataset=tokenized_billsum[\"test\"],\n",
    "    tokenizer=tokenizer,\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "91c564a2-6a8c-4073-ac83-aa45b2ae28fa",
   "metadata": {},
   "source": [
    "# Fine-tuning the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "d3f06124-0e43-4cf6-9af8-af0b42fa1b78",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='248' max='248' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [248/248 03:49, Epoch 4/4]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Rouge1</th>\n",
       "      <th>Rouge2</th>\n",
       "      <th>Rougel</th>\n",
       "      <th>Rougelsum</th>\n",
       "      <th>Gen Len</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>No log</td>\n",
       "      <td>2.797509</td>\n",
       "      <td>0.125500</td>\n",
       "      <td>0.036400</td>\n",
       "      <td>0.106700</td>\n",
       "      <td>0.106400</td>\n",
       "      <td>19.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>No log</td>\n",
       "      <td>2.585288</td>\n",
       "      <td>0.135400</td>\n",
       "      <td>0.046000</td>\n",
       "      <td>0.112500</td>\n",
       "      <td>0.112200</td>\n",
       "      <td>19.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>No log</td>\n",
       "      <td>2.522834</td>\n",
       "      <td>0.139200</td>\n",
       "      <td>0.049100</td>\n",
       "      <td>0.114500</td>\n",
       "      <td>0.114200</td>\n",
       "      <td>19.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4</td>\n",
       "      <td>No log</td>\n",
       "      <td>2.506120</td>\n",
       "      <td>0.141300</td>\n",
       "      <td>0.050300</td>\n",
       "      <td>0.116300</td>\n",
       "      <td>0.116100</td>\n",
       "      <td>19.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/conda/lib/python3.11/site-packages/transformers/generation/utils.py:1355: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=248, training_loss=3.0278184952274447, metrics={'train_runtime': 230.4959, 'train_samples_per_second': 17.163, 'train_steps_per_second': 1.076, 'total_flos': 1070824333246464.0, 'train_loss': 3.0278184952274447, 'epoch': 4.0})"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Training needs numpy\n",
    "import numpy as np\n",
    "\n",
    "# Fine-tuning the model\n",
    "trainer.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "166d4903-8809-4a77-9f43-45316cbccc91",
   "metadata": {},
   "source": [
    "# Interface"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "4b5fd53a-df64-4273-bc9a-b0e02c212f0b",
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"summarize: The Inflation Reduction Act lowers prescription drug costs, health care costs, and energy costs. It's the most aggressive action on tackling the climate crisis in American history, which will lift up American workers and create good-paying, union jobs across the country. It'll lower the deficit and ask the ultra-wealthy and corporations to pay their fair share. And no one making under $400,000 per year will pay a penny more in taxes.\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0635a21-fde7-4d8e-92f0-9058131afd85",
   "metadata": {},
   "source": [
    "# SAVING THE MODEL"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "afe34cd8-eccb-4cea-abfb-7775173be6b9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7afa4227cddf46b580032efb5050b6f2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Upload 3 LFS files:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c95787eebc7b42e8851e256c1b23e57e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "events.out.tfevents.1712201512.fc100.155086.0:   0%|          | 0.00/7.81k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "84de531b675141bc8b471214b9a308c1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors:   0%|          | 0.00/242M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5d8b263ec643440fbddf787a0bab59a5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "training_args.bin:   0%|          | 0.00/4.86k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "trainer.save_model(\"./California_bills_summary\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a14d26cd-ac89-4e11-a884-0550f8ff39c6",
   "metadata": {},
   "source": [
    "# PUSHING MODEL TO PERSONAL HUGGINFACE HUB"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "90908ffc-9dac-451c-a0ff-edaae4312aed",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "CommitInfo(commit_url='https://huggingface.co/cheaptrix/California_bills_summary/commit/5a2db3aecf4f224ab11b75fc9c3dedbc4fa0a570', commit_message='cheaptrix/California_bills_summary', commit_description='', oid='5a2db3aecf4f224ab11b75fc9c3dedbc4fa0a570', pr_url=None, pr_revision=None, pr_num=None)"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.push_to_hub(\"cheaptrix/California_bills_summary\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "484d784c-2700-4e2e-8c09-99293468487d",
   "metadata": {},
   "source": [
    "# Creating a pipeline with the transformers module"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "7298e9e4-4a53-4494-8f8a-0a69dbb55d52",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ade2d9311d3249fcb6e33fa5da4a6fa4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/1.51k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3d89a35f912c441fa40514f6966d87af",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors:   0%|          | 0.00/242M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7e37b930e95c4f6e8dbf65dd78dc7360",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "generation_config.json:   0%|          | 0.00/112 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c63f4905c41041038fac2b6f0860655f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer_config.json:   0%|          | 0.00/20.7k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "beaf7c005393433f8987a5d8a612c2a3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer.json:   0%|          | 0.00/2.42M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "96071911ee5f42978d9d2164510bba13",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "special_tokens_map.json:   0%|          | 0.00/2.54k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Your max_length is set to 200, but your input_length is only 103. Since this is a summarization task, where outputs shorter than the input are typically wanted, you might consider decreasing max_length manually, e.g. summarizer('...', max_length=51)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[{'summary_text': \"the Inflation Reduction Act lowers prescription drug costs, health care costs, and energy costs . it's the most aggressive action on tackling the climate crisis in American history . no one making under $400,000 per year will pay a penny more in taxes .\"}]"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from transformers import pipeline\n",
    "\n",
    "summarizer = pipeline(\"summarization\", model=\"cheaptrix/California_bills_summary\")\n",
    "summarizer(text)\n",
    "# [{\"summary_text\": \"The Inflation Reduction Act lowers prescription drug costs, health care costs, and energy costs. It's the most aggressive action on tackling the climate crisis in American history, which will lift up American workers and create good-paying, union jobs across the country.\"}]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08a1e990-420c-4c2b-becf-69d096865a10",
   "metadata": {},
   "source": [
    "# Manaul pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "6d46a243-bfbc-4304-ae5b-db48c045e517",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"cheaptrix/California_bills_summary\")\n",
    "inputs = tokenizer(text, return_tensors=\"pt\").input_ids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "ff9ffe5e-24a8-4baa-abd9-b72dbf4ecc93",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForSeq2SeqLM\n",
    "\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(\"cheaptrix/California_bills_summary\")\n",
    "outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "24aa0a58-781f-4883-90e2-8a7818192fab",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"the Inflation Reduction Act lowers prescription drug costs, health care costs, and energy costs. it's the most aggressive action on tackling the climate crisis in American history. it'll ask the ultra-wealthy and corporations to pay their fair share.\""
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer.decode(outputs[0], skip_special_tokens=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3320e679-fd4d-4d23-ab05-5184b579af21",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}