cheenchan commited on
Commit
4ce60a5
·
verified ·
1 Parent(s): eefae25

:space_invader: --#1

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 198.27 +/- 72.26
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 283.37 +/- 17.58
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb4dc536b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb4dc536c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb4dc536cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb4dc536d40>", "_build": "<function ActorCriticPolicy._build at 0x7bb4dc536dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7bb4dc536e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb4dc536ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb4dc536f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb4dc537010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb4dc5370a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb4dc537130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb4dc5371c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb4df4932c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4864, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729547235301572988, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAODrgL7PPwa8N2MpOYkAuTZExlk9fG1BuAAAgD8AAIA/M92FvXvwiLr7SHm52SHBtBmgATuKH5E4AACAPwAAgD9zMOS9wxFLuh8SnTpFWzW5bkiLu5F5vTcAAIA/AACAPwDcvj1SEIW5MpvKusnsjbYTiy24mjQDNgAAgD8AAIA/5qd1PQrHQLlajpW5fNUQtqw+ezqnNbY4AACAPwAAgD8NFcU9pLB6OMxJojoD5xk2IDhmuzNnwbkAAIA/AACAP7NpDz5pkhe8yoshOp5Q4bgTw4e9T0+9uQAAgD8AAIA/Mz8bvhT0nbwSUsO8L0xBPPCvCz7ByRu9AACAPwAAgD/mS8C9eyqaunqMxLo3OQe2S+r5uIOD4TkAAIA/AACAP9pBpr3h3Kq6KPw3Ow1YsjaeejG6DR1TugAAgD8AAIA/AFw8PK4xgrqKhQw8hoMSNV68QrrnDwk0AACAPwAAgD/NJhW++z3mOyErJ7nQt6g2TyFmvS13ZTgAAIA/AACAPzOzAbl7AoC6FvLXO8LsBDh08Vg7gG18NgAAgD8AAIA/cyUcvilLCLwq0RC8in0+ureqVz1ugx07AACAPwAAgD8zxnU9XIchuiVkCbom5ua05J2Fu8XVIzkAAIA/AACAP5qOj7245om5aPmfPcRBp7g4lwQ8LvGmtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5aa45d43a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5aa45d4430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5aa45d44c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5aa45d4550>", "_build": "<function ActorCriticPolicy._build at 0x7f5aa45d45e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5aa45d4670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5aa45d4700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5aa45d4790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5aa45d4820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5aa45d48b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5aa45d4940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5aa45d49d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5aa457b880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729560495245789486, "learning_rate": 0.00025, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb7CD5N0oo+uXWCvp4js77pkYE9CNAvvgAAAAAAAAAAsyYLPQVN2Lsd9va9QWjwO+93Nj2eGta8AACAPwAAgD8Avgi8KYgougToKLP6KfGu0VaRumXmyjMAAIA/AACAPzOp1jzDqS66qsvvOyU0FbJ68aq70V1GswAAgD8AAIA/ZqjgPEghorrdcls8JDWTPISHDbsjPn89AACAPwAAgD9m49884wP0PgLv0L0OqgS/7D0pvHiDaL0AAAAAAAAAALPBLT2u3aW6yFbhtnflPrFSnbW6XsYBNgAAgD8AAIA/mn0JPVLFn7vmzAC+ScSZPNrRED1TcoK9AACAPwAAgD+Ajsc9gmipP1iPrj4yqvu+NQELPnY/Iz4AAAAAAAAAAABzdL322yk9+O8jPlqftL6tWa09djGBPQAAAAAAAAAAAGXVPYYdzz6+9MG8IXQUv6FHqj1n/Ea9AAAAAAAAAADNzB+8nm6xP2n4or6HAsm+yf7DOxsqfzsAAAAAAAAAAPrqeD7D9n8/wwbXPgPzHb9KMb4+xMIPPgAAAAAAAAAAZkADPYXRzbu5Oxc9vRKFPLv6Mr2YPWE9AACAPwAAgD9NerW9YnluPybdaL1mtBm/SFlcvo3SkbwAAAAAAAAAAM0o2LtURqA9ot1xvKGVVb4yqlA9zZeYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI/qOgg5iqMAWyUS9uMAXSUR0CYtazUI9kjdX2UKGgGR0BzBPkFOfukaAdL52gIR0CYtgC9h7VsdX2UKGgGR0ByGM/4ZdfLaAdL3GgIR0CYth8iOeasdX2UKGgGR0Bxrhvm5lOHaAdL2mgIR0CYtmzC1qnFdX2UKGgGR0BxnmkRBeHBaAdLtGgIR0CYtpxAB1cMdX2UKGgGR0Bz4o2fkFOgaAdLxmgIR0CYts9kBjnWdX2UKGgGR0BHn/D1oQFtaAdLlWgIR0CYtyjNY8uBdX2UKGgGR0ByYw3juKGdaAdL3WgIR0CYtyyd4FA3dX2UKGgGR0BxczXI2fkFaAdLtmgIR0CYt1bcoH9ndX2UKGgGR0BwuyxIJ7b+aAdLx2gIR0CYt2Of/WDpdX2UKGgGR0BylbuQZGayaAdLyGgIR0CYt3UA1ejVdX2UKGgGR0BwzYVKwpvxaAdLv2gIR0CYt310knkUdX2UKGgGR0ByfCYNRWLhaAdL3WgIR0CYt8H4oJAudX2UKGgGR0BwN/O9nK4haAdL02gIR0CYt8zP8hs7dX2UKGgGR0B0Dl0A93bFaAdLzWgIR0CYt/gjyFwldX2UKGgGR0ByR73UQTVUaAdLzWgIR0CYuLddVvMsdX2UKGgGR0BwcVQLux8laAdLv2gIR0CYuUbDdgv2dX2UKGgGR0BzNIcp9ZzQaAdL0mgIR0CYufDrJKaodX2UKGgGR0Bycz67/XGwaAdLsGgIR0CYuhrRSgoPdX2UKGgGR0BzThF2FFlTaAdL5GgIR0CYunUx20RfdX2UKGgGR0ByhzR6Ww/xaAdLzmgIR0CYuoIN3GGVdX2UKGgGR0Byu0G+sYEXaAdLrWgIR0CYup9CNS62dX2UKGgGR0ByZDWiDdxiaAdLrWgIR0CYusa6BiCrdX2UKGgGR0ByUuQnx8UmaAdLxWgIR0CYux2WpqASdX2UKGgGR0BypIbiqABlaAdL1GgIR0CYuyp9qk/KdX2UKGgGR0ByW8trbg0kaAdL/WgIR0CYuziy6cy4dX2UKGgGR0BwY7s2NvOyaAdLzmgIR0CYu1vdM0xedX2UKGgGR0BzKmfZmI0qaAdL52gIR0CYu4Xq7iAEdX2UKGgGR0By9/ICEHt4aAdLyGgIR0CYu5kX1rZbdX2UKGgGR0BxsH0cwQDnaAdLymgIR0CYu5gXdj5LdX2UKGgGR0Bz+FfQa72+aAdL2GgIR0CYvAoZAIIGdX2UKGgGR0BykUuqWC2+aAdL2WgIR0CYvNTdtVJddX2UKGgGR0BwdaHerMkhaAdL0mgIR0CYvT5Ke05VdX2UKGgGR0ByyXi704BFaAdLtGgIR0CYvXABDG96dX2UKGgGR0Bv8dxMnJDFaAdLw2gIR0CYvZk2xY7rdX2UKGgGR0BTX0cKgIyCaAdLnmgIR0CYvaf8uSOjdX2UKGgGR0Bwp4ENe+mFaAdLs2gIR0CYvcpIMBp6dX2UKGgGR0BwN4eyRjjJaAdLu2gIR0CYveMBp5/tdX2UKGgGR0ByVQqQRwqBaAdLuWgIR0CYvsy3kPtldX2UKGgGR0BwxHvYvnKXaAdLw2gIR0CYvtq//NqydX2UKGgGR0BxDgf9xZMdaAdLt2gIR0CYvvRg7YChdX2UKGgGR0Bx2JTuOS4faAdL0WgIR0CYvwgRsdkrdX2UKGgGR0BwHzgtOEdvaAdLwWgIR0CYvzkEs8PndX2UKGgGR0Byyc0dilSCaAdL5mgIR0CYv3fl6qsEdX2UKGgGR0BxDTgccU/OaAdNBQFoCEdAmL+A7xNIsnV9lChoBkdAcpgaTOgQH2gHS99oCEdAmL/FLnLaEnV9lChoBkdAcN1L4vexfWgHS9toCEdAmMArYGt6onV9lChoBkdAcPpKDCgsb2gHS8toCEdAmMCvo3aSLnV9lChoBkdAc3zSvTw2EWgHS8NoCEdAmMD0C/47BHV9lChoBkdAb6QX5WRzR2gHS71oCEdAmMEIsRQJonV9lChoBkdAcgQVLi++NGgHS69oCEdAmMEe85CF9XV9lChoBkdAcRdrEcbR4WgHS8poCEdAmMG9Ba9sanV9lChoBkdAc8mn3cpLEmgHS+poCEdAmMIeY2Kl6HV9lChoBkdAcX3xwhnrZGgHS8VoCEdAmMK7lA/s3XV9lChoBkdAcOK6Mir1d2gHS9JoCEdAmMLa0D2alXV9lChoBkdActH1O0svqWgHS8JoCEdAmML2CI1tO3V9lChoBkdAcWb/5Lytm2gHS6NoCEdAmMLxRyfcvnV9lChoBkdAcnd0Mw1zhmgHS7xoCEdAmMMabrkbP3V9lChoBkdAclzGn4wh4mgHS+BoCEdAmMMvGyX2NHV9lChoBkdAcoG0f5k9U2gHS89oCEdAmMOklu3tr3V9lChoBkdAcltNYbKif2gHS+poCEdAmMOwm3OObXV9lChoBkdAcvqgJC0F82gHS8poCEdAmMSC2lVLjHV9lChoBkdAcdUBd2PkrGgHS85oCEdAmMVkL2HtW3V9lChoBkdAcYN7xusLfGgHS8NoCEdAmMWXXNC7b3V9lChoBkdAceZddE9dNWgHS85oCEdAmMXIh+vyLHV9lChoBkdAcykNBF/hEWgHS8xoCEdAmMX0mlZX+3V9lChoBkdAcgiU0Nz8xmgHTY0BaAhHQJjGJzeXRgJ1fZQoaAZHQHEgj9jwx35oB0vNaAhHQJjG4NgBtDV1fZQoaAZHQG9HT/ZM+NdoB0uwaAhHQJjHfdweeWh1fZQoaAZHQG75VuR9w3poB0u6aAhHQJjIKZv1lGx1fZQoaAZHQHFOUDIRywRoB0vDaAhHQJjINE5Qxet1fZQoaAZHQHGdrSmZVn5oB0vJaAhHQJjIaaScLBt1fZQoaAZHQHKuiHmA9V5oB0uxaAhHQJjIi+49X911fZQoaAZHQHJJYXoC+11oB0v0aAhHQJjIiYUnG851fZQoaAZHQHDEE/fO2RdoB0vHaAhHQJjIst7KJVN1fZQoaAZHQG7nh9Cu2Z1oB0vEaAhHQJjJG0E5hjR1fZQoaAZHQHLGn0wrUb1oB0v+aAhHQJjJiO6unuR1fZQoaAZHQHCh8ABDG99oB0vCaAhHQJjJ1QFcIJJ1fZQoaAZHQHKx+KfnOjZoB0usaAhHQJjKgTh5xBF1fZQoaAZHQHDqWx6fJ3hoB0vCaAhHQJjK85q/M4d1fZQoaAZHQHLgshs67uloB0u8aAhHQJjLW+qR2bJ1fZQoaAZHQHMOmuHN5dJoB0veaAhHQJjLhTBInSh1fZQoaAZHQHPyAlWwNb1oB0uzaAhHQJjL2FzuF6B1fZQoaAZHQHIfNZid8RdoB0vbaAhHQJjMCCoS+QF1fZQoaAZHQHAsVmz0HyFoB0uuaAhHQJjNGALApKB1fZQoaAZHQHL094iX6ZZoB0vSaAhHQJjNU6aLGaR1fZQoaAZHQHJrbQ1JlJ9oB0vPaAhHQJjNuhVU+9t1fZQoaAZHQHBdpHRTjvNoB0vIaAhHQJjNuEEkjX51fZQoaAZHQG5agKOT7l9oB0uxaAhHQJjNxwzch1V1fZQoaAZHQHMqrADaGpNoB0vHaAhHQJjNzdxhlUZ1fZQoaAZHQHPbTh5xBE9oB0vXaAhHQJjOEDdP+GZ1fZQoaAZHQHHSLm6oVEdoB0vSaAhHQJjOFJVbRnh1fZQoaAZHQFCDRoRIz31oB0udaAhHQJjOUpBomHB1fZQoaAZHQHNoPGhmGudoB0vRaAhHQJjO5yq+8Gt1fZQoaAZHQHM8VvuPV/doB0viaAhHQJjPA/wAlv91fZQoaAZHQEGiwaBI4ERoB0uQaAhHQJjPJhAnlXB1fZQoaAZHQHFEIAGSpzdoB0vOaAhHQJjPkfzSThZ1fZQoaAZHQHGVZWeYlY5oB0vHaAhHQJjP263AmAt1fZQoaAZHQHIxG+oLofVoB0vcaAhHQJjQJg/keZJ1fZQoaAZHQHO2hjz7MxJoB0vjaAhHQJjQlTR6WxB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3cf7d42e56f7682e4aa3f80b4063df8aa9837780474589d5c51f17d439217ed
3
- size 143877
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58f9e5b853a6dcc0282d93c5a8c21a2efc1c268fe51470dadbb91d770f76e430
3
+ size 147896
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb4dc536b90>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb4dc536c20>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb4dc536cb0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb4dc536d40>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7bb4dc536dd0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7bb4dc536e60>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb4dc536ef0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb4dc536f80>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7bb4dc537010>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb4dc5370a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb4dc537130>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb4dc5371c0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7bb4df4932c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 4864,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1729547235301572988,
30
- "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAODrgL7PPwa8N2MpOYkAuTZExlk9fG1BuAAAgD8AAIA/M92FvXvwiLr7SHm52SHBtBmgATuKH5E4AACAPwAAgD9zMOS9wxFLuh8SnTpFWzW5bkiLu5F5vTcAAIA/AACAPwDcvj1SEIW5MpvKusnsjbYTiy24mjQDNgAAgD8AAIA/5qd1PQrHQLlajpW5fNUQtqw+ezqnNbY4AACAPwAAgD8NFcU9pLB6OMxJojoD5xk2IDhmuzNnwbkAAIA/AACAP7NpDz5pkhe8yoshOp5Q4bgTw4e9T0+9uQAAgD8AAIA/Mz8bvhT0nbwSUsO8L0xBPPCvCz7ByRu9AACAPwAAgD/mS8C9eyqaunqMxLo3OQe2S+r5uIOD4TkAAIA/AACAP9pBpr3h3Kq6KPw3Ow1YsjaeejG6DR1TugAAgD8AAIA/AFw8PK4xgrqKhQw8hoMSNV68QrrnDwk0AACAPwAAgD/NJhW++z3mOyErJ7nQt6g2TyFmvS13ZTgAAIA/AACAPzOzAbl7AoC6FvLXO8LsBDh08Vg7gG18NgAAgD8AAIA/cyUcvilLCLwq0RC8in0+ureqVz1ugx07AACAPwAAgD8zxnU9XIchuiVkCbom5ua05J2Fu8XVIzkAAIA/AACAP5qOj7245om5aPmfPcRBp7g4lwQ8LvGmtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 124,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -77,14 +77,14 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 1024,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
- "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
@@ -94,6 +94,6 @@
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5aa45d43a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5aa45d4430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5aa45d44c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5aa45d4550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5aa45d45e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5aa45d4670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5aa45d4700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5aa45d4790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5aa45d4820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5aa45d48b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5aa45d4940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5aa45d49d0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5aa457b880>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1729560495245789486,
30
+ "learning_rate": 0.00025,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb7CD5N0oo+uXWCvp4js77pkYE9CNAvvgAAAAAAAAAAsyYLPQVN2Lsd9va9QWjwO+93Nj2eGta8AACAPwAAgD8Avgi8KYgougToKLP6KfGu0VaRumXmyjMAAIA/AACAPzOp1jzDqS66qsvvOyU0FbJ68aq70V1GswAAgD8AAIA/ZqjgPEghorrdcls8JDWTPISHDbsjPn89AACAPwAAgD9m49884wP0PgLv0L0OqgS/7D0pvHiDaL0AAAAAAAAAALPBLT2u3aW6yFbhtnflPrFSnbW6XsYBNgAAgD8AAIA/mn0JPVLFn7vmzAC+ScSZPNrRED1TcoK9AACAPwAAgD+Ajsc9gmipP1iPrj4yqvu+NQELPnY/Iz4AAAAAAAAAAABzdL322yk9+O8jPlqftL6tWa09djGBPQAAAAAAAAAAAGXVPYYdzz6+9MG8IXQUv6FHqj1n/Ea9AAAAAAAAAADNzB+8nm6xP2n4or6HAsm+yf7DOxsqfzsAAAAAAAAAAPrqeD7D9n8/wwbXPgPzHb9KMb4+xMIPPgAAAAAAAAAAZkADPYXRzbu5Oxc9vRKFPLv6Mr2YPWE9AACAPwAAgD9NerW9YnluPybdaL1mtBm/SFlcvo3SkbwAAAAAAAAAAM0o2LtURqA9ot1xvKGVVb4yqlA9zZeYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHI/qOgg5iqMAWyUS9uMAXSUR0CYtazUI9kjdX2UKGgGR0BzBPkFOfukaAdL52gIR0CYtgC9h7VsdX2UKGgGR0ByGM/4ZdfLaAdL3GgIR0CYth8iOeasdX2UKGgGR0Bxrhvm5lOHaAdL2mgIR0CYtmzC1qnFdX2UKGgGR0BxnmkRBeHBaAdLtGgIR0CYtpxAB1cMdX2UKGgGR0Bz4o2fkFOgaAdLxmgIR0CYts9kBjnWdX2UKGgGR0BHn/D1oQFtaAdLlWgIR0CYtyjNY8uBdX2UKGgGR0ByYw3juKGdaAdL3WgIR0CYtyyd4FA3dX2UKGgGR0BxczXI2fkFaAdLtmgIR0CYt1bcoH9ndX2UKGgGR0BwuyxIJ7b+aAdLx2gIR0CYt2Of/WDpdX2UKGgGR0BylbuQZGayaAdLyGgIR0CYt3UA1ejVdX2UKGgGR0BwzYVKwpvxaAdLv2gIR0CYt310knkUdX2UKGgGR0ByfCYNRWLhaAdL3WgIR0CYt8H4oJAudX2UKGgGR0BwN/O9nK4haAdL02gIR0CYt8zP8hs7dX2UKGgGR0B0Dl0A93bFaAdLzWgIR0CYt/gjyFwldX2UKGgGR0ByR73UQTVUaAdLzWgIR0CYuLddVvMsdX2UKGgGR0BwcVQLux8laAdLv2gIR0CYuUbDdgv2dX2UKGgGR0BzNIcp9ZzQaAdL0mgIR0CYufDrJKaodX2UKGgGR0Bycz67/XGwaAdLsGgIR0CYuhrRSgoPdX2UKGgGR0BzThF2FFlTaAdL5GgIR0CYunUx20RfdX2UKGgGR0ByhzR6Ww/xaAdLzmgIR0CYuoIN3GGVdX2UKGgGR0Byu0G+sYEXaAdLrWgIR0CYup9CNS62dX2UKGgGR0ByZDWiDdxiaAdLrWgIR0CYusa6BiCrdX2UKGgGR0ByUuQnx8UmaAdLxWgIR0CYux2WpqASdX2UKGgGR0BypIbiqABlaAdL1GgIR0CYuyp9qk/KdX2UKGgGR0ByW8trbg0kaAdL/WgIR0CYuziy6cy4dX2UKGgGR0BwY7s2NvOyaAdLzmgIR0CYu1vdM0xedX2UKGgGR0BzKmfZmI0qaAdL52gIR0CYu4Xq7iAEdX2UKGgGR0By9/ICEHt4aAdLyGgIR0CYu5kX1rZbdX2UKGgGR0BxsH0cwQDnaAdLymgIR0CYu5gXdj5LdX2UKGgGR0Bz+FfQa72+aAdL2GgIR0CYvAoZAIIGdX2UKGgGR0BykUuqWC2+aAdL2WgIR0CYvNTdtVJddX2UKGgGR0BwdaHerMkhaAdL0mgIR0CYvT5Ke05VdX2UKGgGR0ByyXi704BFaAdLtGgIR0CYvXABDG96dX2UKGgGR0Bv8dxMnJDFaAdLw2gIR0CYvZk2xY7rdX2UKGgGR0BTX0cKgIyCaAdLnmgIR0CYvaf8uSOjdX2UKGgGR0Bwp4ENe+mFaAdLs2gIR0CYvcpIMBp6dX2UKGgGR0BwN4eyRjjJaAdLu2gIR0CYveMBp5/tdX2UKGgGR0ByVQqQRwqBaAdLuWgIR0CYvsy3kPtldX2UKGgGR0BwxHvYvnKXaAdLw2gIR0CYvtq//NqydX2UKGgGR0BxDgf9xZMdaAdLt2gIR0CYvvRg7YChdX2UKGgGR0Bx2JTuOS4faAdL0WgIR0CYvwgRsdkrdX2UKGgGR0BwHzgtOEdvaAdLwWgIR0CYvzkEs8PndX2UKGgGR0Byyc0dilSCaAdL5mgIR0CYv3fl6qsEdX2UKGgGR0BxDTgccU/OaAdNBQFoCEdAmL+A7xNIsnV9lChoBkdAcpgaTOgQH2gHS99oCEdAmL/FLnLaEnV9lChoBkdAcN1L4vexfWgHS9toCEdAmMArYGt6onV9lChoBkdAcPpKDCgsb2gHS8toCEdAmMCvo3aSLnV9lChoBkdAc3zSvTw2EWgHS8NoCEdAmMD0C/47BHV9lChoBkdAb6QX5WRzR2gHS71oCEdAmMEIsRQJonV9lChoBkdAcgQVLi++NGgHS69oCEdAmMEe85CF9XV9lChoBkdAcRdrEcbR4WgHS8poCEdAmMG9Ba9sanV9lChoBkdAc8mn3cpLEmgHS+poCEdAmMIeY2Kl6HV9lChoBkdAcX3xwhnrZGgHS8VoCEdAmMK7lA/s3XV9lChoBkdAcOK6Mir1d2gHS9JoCEdAmMLa0D2alXV9lChoBkdActH1O0svqWgHS8JoCEdAmML2CI1tO3V9lChoBkdAcWb/5Lytm2gHS6NoCEdAmMLxRyfcvnV9lChoBkdAcnd0Mw1zhmgHS7xoCEdAmMMabrkbP3V9lChoBkdAclzGn4wh4mgHS+BoCEdAmMMvGyX2NHV9lChoBkdAcoG0f5k9U2gHS89oCEdAmMOklu3tr3V9lChoBkdAcltNYbKif2gHS+poCEdAmMOwm3OObXV9lChoBkdAcvqgJC0F82gHS8poCEdAmMSC2lVLjHV9lChoBkdAcdUBd2PkrGgHS85oCEdAmMVkL2HtW3V9lChoBkdAcYN7xusLfGgHS8NoCEdAmMWXXNC7b3V9lChoBkdAceZddE9dNWgHS85oCEdAmMXIh+vyLHV9lChoBkdAcykNBF/hEWgHS8xoCEdAmMX0mlZX+3V9lChoBkdAcgiU0Nz8xmgHTY0BaAhHQJjGJzeXRgJ1fZQoaAZHQHEgj9jwx35oB0vNaAhHQJjG4NgBtDV1fZQoaAZHQG9HT/ZM+NdoB0uwaAhHQJjHfdweeWh1fZQoaAZHQG75VuR9w3poB0u6aAhHQJjIKZv1lGx1fZQoaAZHQHFOUDIRywRoB0vDaAhHQJjINE5Qxet1fZQoaAZHQHGdrSmZVn5oB0vJaAhHQJjIaaScLBt1fZQoaAZHQHKuiHmA9V5oB0uxaAhHQJjIi+49X911fZQoaAZHQHJJYXoC+11oB0v0aAhHQJjIiYUnG851fZQoaAZHQHDEE/fO2RdoB0vHaAhHQJjIst7KJVN1fZQoaAZHQG7nh9Cu2Z1oB0vEaAhHQJjJG0E5hjR1fZQoaAZHQHLGn0wrUb1oB0v+aAhHQJjJiO6unuR1fZQoaAZHQHCh8ABDG99oB0vCaAhHQJjJ1QFcIJJ1fZQoaAZHQHKx+KfnOjZoB0usaAhHQJjKgTh5xBF1fZQoaAZHQHDqWx6fJ3hoB0vCaAhHQJjK85q/M4d1fZQoaAZHQHLgshs67uloB0u8aAhHQJjLW+qR2bJ1fZQoaAZHQHMOmuHN5dJoB0veaAhHQJjLhTBInSh1fZQoaAZHQHPyAlWwNb1oB0uzaAhHQJjL2FzuF6B1fZQoaAZHQHIfNZid8RdoB0vbaAhHQJjMCCoS+QF1fZQoaAZHQHAsVmz0HyFoB0uuaAhHQJjNGALApKB1fZQoaAZHQHL094iX6ZZoB0vSaAhHQJjNU6aLGaR1fZQoaAZHQHJrbQ1JlJ9oB0vPaAhHQJjNuhVU+9t1fZQoaAZHQHBdpHRTjvNoB0vIaAhHQJjNuEEkjX51fZQoaAZHQG5agKOT7l9oB0uxaAhHQJjNxwzch1V1fZQoaAZHQHMqrADaGpNoB0vHaAhHQJjNzdxhlUZ1fZQoaAZHQHPbTh5xBE9oB0vXaAhHQJjOEDdP+GZ1fZQoaAZHQHHSLm6oVEdoB0vSaAhHQJjOFJVbRnh1fZQoaAZHQFCDRoRIz31oB0udaAhHQJjOUpBomHB1fZQoaAZHQHNoPGhmGudoB0vRaAhHQJjO5yq+8Gt1fZQoaAZHQHM8VvuPV/doB0viaAhHQJjPA/wAlv91fZQoaAZHQEGiwaBI4ERoB0uQaAhHQJjPJhAnlXB1fZQoaAZHQHFEIAGSpzdoB0vOaAhHQJjPkfzSThZ1fZQoaAZHQHGVZWeYlY5oB0vHaAhHQJjP263AmAt1fZQoaAZHQHIxG+oLofVoB0vcaAhHQJjQJg/keZJ1fZQoaAZHQHO2hjz7MxJoB0vjaAhHQJjQlTR6WxB1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 736,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 2048,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.005,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 16,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:95aff98c9f8f89362ede872faa2901c16d1ded594cb0802258caaf1b96172a17
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a66247c0ad952288d26ec59e48af7aac206b3d69f037187925d8425bd63417d
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7cadc6e048f795ee8a2ccf326600a2cd5a57cdbe5a733e83ca062f4fad4f00f3
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7be2cfdb0d2038c860308cd825c764a83648039f5c35db06ecc23ea5d036b6b
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 198.26944340000003, "std_reward": 72.26220659551744, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-21T21:59:19.255368"}
 
1
+ {"mean_reward": 283.36758210000005, "std_reward": 17.57853968131072, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-22T01:59:06.137057"}