Chenxi Whitehouse
commited on
Commit
·
a6e9308
1
Parent(s):
ce6cd35
update src
Browse files- README.md +1 -1
- src/prediction/evaluate_veracity.py +3 -8
- src/prediction/veracity_prediction.py +49 -5
README.md
CHANGED
@@ -120,7 +120,7 @@ The result for dev and the test set below. We recommend using 0.25 as cut-off sc
|
|
120 |
|
121 |
| Model | Split | Q only | Q + A | Veracity @ 0.2 | @ 0.25 | @ 0.3 |
|
122 |
|-------------------|-------|--------|-------|----------------|--------|-------|
|
123 |
-
| AVeriTeC-BLOOM-7b | dev |
|
124 |
| AVeriTeC-BLOOM-7b | test | | | | | |
|
125 |
|
126 |
## Citation
|
|
|
120 |
|
121 |
| Model | Split | Q only | Q + A | Veracity @ 0.2 | @ 0.25 | @ 0.3 |
|
122 |
|-------------------|-------|--------|-------|----------------|--------|-------|
|
123 |
+
| AVeriTeC-BLOOM-7b | dev | 0.24 | 0.19 | 0.19 | 0.09 | 0.05 |
|
124 |
| AVeriTeC-BLOOM-7b | test | | | | | |
|
125 |
|
126 |
## Citation
|
src/prediction/evaluate_veracity.py
CHANGED
@@ -23,7 +23,7 @@ def compute_all_pairwise_scores(src_data, tgt_data, metric):
|
|
23 |
return scores
|
24 |
|
25 |
|
26 |
-
def print_with_space(left, right, left_space=
|
27 |
print_spaces = " " * (left_space - len(left))
|
28 |
print(left + print_spaces + right)
|
29 |
|
@@ -303,14 +303,9 @@ if __name__ == "__main__":
|
|
303 |
str(v_score[i]),
|
304 |
)
|
305 |
print("--------------------")
|
|
|
306 |
type_scores = scorer.evaluate_averitec_veracity_by_type(
|
307 |
-
predictions, references, threshold=0.
|
308 |
-
)
|
309 |
-
for t, v in type_scores.items():
|
310 |
-
print_with_space(" * Veracity scores (" + t + "):", str(v))
|
311 |
-
print("--------------------")
|
312 |
-
type_scores = scorer.evaluate_averitec_veracity_by_type(
|
313 |
-
predictions, references, threshold=0.3
|
314 |
)
|
315 |
for t, v in type_scores.items():
|
316 |
print_with_space(" * Veracity scores (" + t + "):", str(v))
|
|
|
23 |
return scores
|
24 |
|
25 |
|
26 |
+
def print_with_space(left, right, left_space=45):
|
27 |
print_spaces = " " * (left_space - len(left))
|
28 |
print(left + print_spaces + right)
|
29 |
|
|
|
303 |
str(v_score[i]),
|
304 |
)
|
305 |
print("--------------------")
|
306 |
+
print("AVeriTeC scores by type @ 0.25:")
|
307 |
type_scores = scorer.evaluate_averitec_veracity_by_type(
|
308 |
+
predictions, references, threshold=0.25
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
)
|
310 |
for t, v in type_scores.items():
|
311 |
print_with_space(" * Veracity scores (" + t + "):", str(v))
|
src/prediction/veracity_prediction.py
CHANGED
@@ -2,11 +2,9 @@ import argparse
|
|
2 |
import json
|
3 |
import tqdm
|
4 |
import torch
|
|
|
5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
-
from
|
7 |
-
SequenceClassificationDataLoader,
|
8 |
-
)
|
9 |
-
from models.SequenceClassificationModule import SequenceClassificationModule
|
10 |
|
11 |
|
12 |
LABEL = [
|
@@ -17,6 +15,50 @@ LABEL = [
|
|
17 |
]
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
if __name__ == "__main__":
|
21 |
parser = argparse.ArgumentParser(
|
22 |
description="Given a claim and its 3 QA pairs as evidence, we use another pre-trained BERT model to predict the veracity label."
|
@@ -83,7 +125,9 @@ if __name__ == "__main__":
|
|
83 |
|
84 |
tokenized_strings, attention_mask = dataLoader.tokenize_strings(example_strings)
|
85 |
example_support = torch.argmax(
|
86 |
-
trained_model(
|
|
|
|
|
87 |
axis=1,
|
88 |
)
|
89 |
|
|
|
2 |
import json
|
3 |
import tqdm
|
4 |
import torch
|
5 |
+
import pytorch_lightning as pl
|
6 |
from transformers import BertTokenizer, BertForSequenceClassification
|
7 |
+
from src.models.SequenceClassificationModule import SequenceClassificationModule
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
LABEL = [
|
|
|
15 |
]
|
16 |
|
17 |
|
18 |
+
class SequenceClassificationDataLoader(pl.LightningDataModule):
|
19 |
+
def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False):
|
20 |
+
super().__init__()
|
21 |
+
self.tokenizer = tokenizer
|
22 |
+
self.data_file = data_file
|
23 |
+
self.batch_size = batch_size
|
24 |
+
self.add_extra_nee = add_extra_nee
|
25 |
+
|
26 |
+
def tokenize_strings(
|
27 |
+
self,
|
28 |
+
source_sentences,
|
29 |
+
max_length=512,
|
30 |
+
pad_to_max_length=False,
|
31 |
+
return_tensors="pt",
|
32 |
+
):
|
33 |
+
encoded_dict = self.tokenizer(
|
34 |
+
source_sentences,
|
35 |
+
max_length=max_length,
|
36 |
+
padding="max_length" if pad_to_max_length else "longest",
|
37 |
+
truncation=True,
|
38 |
+
return_tensors=return_tensors,
|
39 |
+
)
|
40 |
+
|
41 |
+
input_ids = encoded_dict["input_ids"]
|
42 |
+
attention_masks = encoded_dict["attention_mask"]
|
43 |
+
|
44 |
+
return input_ids, attention_masks
|
45 |
+
|
46 |
+
def quadruple_to_string(self, claim, question, answer, bool_explanation=""):
|
47 |
+
if bool_explanation is not None and len(bool_explanation) > 0:
|
48 |
+
bool_explanation = ", because " + bool_explanation.lower().strip()
|
49 |
+
else:
|
50 |
+
bool_explanation = ""
|
51 |
+
return (
|
52 |
+
"[CLAIM] "
|
53 |
+
+ claim.strip()
|
54 |
+
+ " [QUESTION] "
|
55 |
+
+ question.strip()
|
56 |
+
+ " "
|
57 |
+
+ answer.strip()
|
58 |
+
+ bool_explanation
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
if __name__ == "__main__":
|
63 |
parser = argparse.ArgumentParser(
|
64 |
description="Given a claim and its 3 QA pairs as evidence, we use another pre-trained BERT model to predict the veracity label."
|
|
|
125 |
|
126 |
tokenized_strings, attention_mask = dataLoader.tokenize_strings(example_strings)
|
127 |
example_support = torch.argmax(
|
128 |
+
trained_model(
|
129 |
+
tokenized_strings.to(device), attention_mask=attention_mask.to(device)
|
130 |
+
).logits,
|
131 |
axis=1,
|
132 |
)
|
133 |
|