|
import sys
|
|
import logging
|
|
|
|
import datasets
|
|
from datasets import load_dataset
|
|
from peft import LoraConfig
|
|
import torch
|
|
import transformers
|
|
from trl import SFTTrainer
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
|
|
|
|
"""
|
|
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
|
|
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
|
|
This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
|
|
script can be run on V100 or later generation GPUs. Here are some suggestions on
|
|
futher reducing memory consumption:
|
|
- reduce batch size
|
|
- decrease lora dimension
|
|
- restrict lora target modules
|
|
Please follow these steps to run the script:
|
|
1. Install dependencies:
|
|
conda install -c conda-forge accelerate
|
|
pip3 install -i https://pypi.org/simple/ bitsandbytes
|
|
pip3 install peft transformers trl datasets
|
|
pip3 install deepspeed
|
|
2. Setup accelerate and deepspeed config based on the machine used:
|
|
accelerate config
|
|
Here is a sample config for deepspeed zero3:
|
|
compute_environment: LOCAL_MACHINE
|
|
debug: false
|
|
deepspeed_config:
|
|
gradient_accumulation_steps: 1
|
|
offload_optimizer_device: none
|
|
offload_param_device: none
|
|
zero3_init_flag: true
|
|
zero3_save_16bit_model: true
|
|
zero_stage: 3
|
|
distributed_type: DEEPSPEED
|
|
downcast_bf16: 'no'
|
|
enable_cpu_affinity: false
|
|
machine_rank: 0
|
|
main_training_function: main
|
|
mixed_precision: bf16
|
|
num_machines: 1
|
|
num_processes: 4
|
|
rdzv_backend: static
|
|
same_network: true
|
|
tpu_env: []
|
|
tpu_use_cluster: false
|
|
tpu_use_sudo: false
|
|
use_cpu: false
|
|
3. check accelerate config:
|
|
accelerate env
|
|
4. Run the code:
|
|
accelerate launch sample_finetune.py
|
|
"""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
training_config = {
|
|
"bf16": True,
|
|
"do_eval": False,
|
|
"learning_rate": 5.0e-06,
|
|
"log_level": "info",
|
|
"logging_steps": 20,
|
|
"logging_strategy": "steps",
|
|
"lr_scheduler_type": "cosine",
|
|
"num_train_epochs": 1,
|
|
"max_steps": -1,
|
|
"output_dir": "./checkpoint_dir",
|
|
"overwrite_output_dir": True,
|
|
"per_device_eval_batch_size": 4,
|
|
"per_device_train_batch_size": 4,
|
|
"remove_unused_columns": True,
|
|
"save_steps": 100,
|
|
"save_total_limit": 1,
|
|
"seed": 0,
|
|
"gradient_checkpointing": True,
|
|
"gradient_checkpointing_kwargs":{"use_reentrant": False},
|
|
"gradient_accumulation_steps": 1,
|
|
"warmup_ratio": 0.2,
|
|
}
|
|
|
|
peft_config = {
|
|
"r": 16,
|
|
"lora_alpha": 32,
|
|
"lora_dropout": 0.05,
|
|
"bias": "none",
|
|
"task_type": "CAUSAL_LM",
|
|
"target_modules": "all-linear",
|
|
"modules_to_save": None,
|
|
}
|
|
train_conf = TrainingArguments(**training_config)
|
|
peft_conf = LoraConfig(**peft_config)
|
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%Y-%m-%d %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
log_level = train_conf.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
|
|
logger.warning(
|
|
f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
|
|
+ f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {train_conf}")
|
|
logger.info(f"PEFT parameters {peft_conf}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint_path = "microsoft/Phi-3.5-mini-instruct"
|
|
model_kwargs = dict(
|
|
use_cache=False,
|
|
trust_remote_code=True,
|
|
attn_implementation="flash_attention_2",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map=None
|
|
)
|
|
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
|
|
tokenizer.model_max_length = 2048
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
|
tokenizer.padding_side = 'right'
|
|
|
|
|
|
|
|
|
|
|
|
def apply_chat_template(
|
|
example,
|
|
tokenizer,
|
|
):
|
|
messages = example["messages"]
|
|
example["text"] = tokenizer.apply_chat_template(
|
|
messages, tokenize=False, add_generation_prompt=False)
|
|
return example
|
|
|
|
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
|
|
train_dataset = raw_dataset["train_sft"]
|
|
test_dataset = raw_dataset["test_sft"]
|
|
column_names = list(train_dataset.features)
|
|
|
|
processed_train_dataset = train_dataset.map(
|
|
apply_chat_template,
|
|
fn_kwargs={"tokenizer": tokenizer},
|
|
num_proc=10,
|
|
remove_columns=column_names,
|
|
desc="Applying chat template to train_sft",
|
|
)
|
|
|
|
processed_test_dataset = test_dataset.map(
|
|
apply_chat_template,
|
|
fn_kwargs={"tokenizer": tokenizer},
|
|
num_proc=10,
|
|
remove_columns=column_names,
|
|
desc="Applying chat template to test_sft",
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
args=train_conf,
|
|
peft_config=peft_conf,
|
|
train_dataset=processed_train_dataset,
|
|
eval_dataset=processed_test_dataset,
|
|
max_seq_length=2048,
|
|
dataset_text_field="text",
|
|
tokenizer=tokenizer,
|
|
packing=True
|
|
)
|
|
train_result = trainer.train()
|
|
metrics = train_result.metrics
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer.padding_side = 'left'
|
|
metrics = trainer.evaluate()
|
|
metrics["eval_samples"] = len(processed_test_dataset)
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
|
|
|
|
|
|
|
|
trainer.save_model(train_conf.output_dir) |