|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Processor class for Phi3-V.
|
|
"""
|
|
import re
|
|
from typing import List, Optional, Union
|
|
|
|
import torch
|
|
|
|
import transformers
|
|
from transformers.feature_extraction_utils import BatchFeature
|
|
from transformers.image_utils import ImageInput
|
|
from transformers.processing_utils import ProcessorMixin
|
|
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
|
from transformers.utils import TensorType
|
|
|
|
|
|
"""Image processor class for Phi3-V."""
|
|
|
|
from typing import List, Optional, Union
|
|
|
|
import numpy as np
|
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
|
from transformers.image_transforms import (
|
|
convert_to_rgb,
|
|
)
|
|
from transformers.image_utils import (
|
|
OPENAI_CLIP_MEAN,
|
|
OPENAI_CLIP_STD,
|
|
ImageInput,
|
|
make_list_of_images,
|
|
valid_images,
|
|
)
|
|
from transformers.utils import TensorType, is_vision_available, logging
|
|
|
|
from transformers import AutoImageProcessor
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
import torch
|
|
import torchvision
|
|
|
|
def padding_336(b):
|
|
width, height = b.size
|
|
tar = int(np.ceil(height / 336) * 336)
|
|
top_padding = int((tar - height)/2)
|
|
bottom_padding = tar - height - top_padding
|
|
left_padding = 0
|
|
right_padding = 0
|
|
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
|
|
|
|
return b
|
|
|
|
def calc_padded_size(width, height, padding_unit=336):
|
|
target_height = int(np.ceil(height / padding_unit) * padding_unit)
|
|
top_padding = int((target_height - height) / 2)
|
|
bottom_padding = target_height - height - top_padding
|
|
left_padding = 0
|
|
right_padding = 0
|
|
padded_width = width + left_padding + right_padding
|
|
padded_height = height + top_padding + bottom_padding
|
|
return padded_width, padded_height
|
|
|
|
def HD_transform(img, hd_num=16):
|
|
width, height = img.size
|
|
trans = False
|
|
if width < height:
|
|
img = img.transpose(Image.TRANSPOSE)
|
|
trans = True
|
|
width, height = img.size
|
|
ratio = (width/ height)
|
|
scale = 1
|
|
while scale*np.ceil(scale/ratio) <= hd_num:
|
|
scale += 1
|
|
scale -= 1
|
|
new_w = int(scale * 336)
|
|
new_h = int(new_w / ratio)
|
|
|
|
img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
|
|
img = padding_336(img)
|
|
width, height = img.size
|
|
if trans:
|
|
img = img.transpose(Image.TRANSPOSE)
|
|
|
|
return img
|
|
|
|
def calc_hd_transform_size(width, height, hd_num=16):
|
|
transposed = False
|
|
if width < height:
|
|
width, height = height, width
|
|
transposed = True
|
|
|
|
ratio = width / height
|
|
scale = 1
|
|
while scale * np.ceil(scale / ratio) <= hd_num:
|
|
scale += 1
|
|
scale -= 1
|
|
|
|
new_width = int(scale * 336)
|
|
new_height = int(new_width / ratio)
|
|
|
|
padded_width, padded_height = calc_padded_size(new_width, new_height)
|
|
|
|
if transposed:
|
|
padded_width, padded_height = padded_height, padded_width
|
|
|
|
return padded_width, padded_height
|
|
|
|
def pad_to_max_num_crops_tensor(images, max_crops=5):
|
|
"""
|
|
images: B x 3 x H x W, B<=max_crops
|
|
"""
|
|
B, _, H, W = images.shape
|
|
if B < max_crops:
|
|
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
|
images = torch.cat([images, pad], dim=0)
|
|
return images
|
|
|
|
|
|
class Phi3VImageProcessor(BaseImageProcessor):
|
|
r"""
|
|
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
|
|
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
|
|
|
|
Args:
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
|
Whether to convert the image to RGB.
|
|
"""
|
|
|
|
model_input_names = ["pixel_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
num_crops: int = 1,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
do_convert_rgb: bool = True,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
self.num_crops = num_crops
|
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
|
self.do_convert_rgb = do_convert_rgb
|
|
|
|
def calc_num_image_tokens(
|
|
self,
|
|
images: ImageInput
|
|
):
|
|
""" Calculate the number of image tokens for each image.
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
"""
|
|
images = make_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError(
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
|
)
|
|
|
|
images = [image.convert('RGB') for image in images]
|
|
|
|
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
|
shapes = [[im.size[1], im.size[0]] for im in elems]
|
|
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
|
return num_img_tokens
|
|
|
|
def calc_num_image_tokens_from_image_size(self, width, height):
|
|
"""
|
|
Calculate the number of image tokens for a given image size.
|
|
Args:
|
|
width (`int`): Width of the image.
|
|
height (`int`): Height of the image.
|
|
"""
|
|
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
|
|
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
|
|
return num_img_tokens
|
|
|
|
def preprocess(
|
|
self,
|
|
images: ImageInput,
|
|
image_mean: Optional[Union[float, List[float]]] = None,
|
|
image_std: Optional[Union[float, List[float]]] = None,
|
|
do_convert_rgb: bool = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
):
|
|
"""
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
|
`True`.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
|
Whether to convert the image to RGB.
|
|
return_tensors (`str` or `TensorType`, *optional*):
|
|
The type of tensors to return. Can be one of:
|
|
- Unset: Return a list of `np.ndarray`.
|
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
|
"""
|
|
image_mean = image_mean if image_mean is not None else self.image_mean
|
|
image_std = image_std if image_std is not None else self.image_std
|
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
|
|
|
images = make_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError(
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
|
)
|
|
|
|
if do_convert_rgb:
|
|
images = [convert_to_rgb(image) for image in images]
|
|
|
|
image_sizes = []
|
|
img_processor = torchvision.transforms.Compose([
|
|
torchvision.transforms.ToTensor(),
|
|
torchvision.transforms.Normalize(image_mean, image_std)
|
|
])
|
|
|
|
|
|
|
|
|
|
images = [image.convert('RGB') for image in images]
|
|
elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
|
|
|
|
hd_images = [img_processor(im) for im in elems]
|
|
|
|
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
|
|
|
|
|
|
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
|
num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
|
|
|
|
|
|
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
|
|
|
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
|
|
|
|
|
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
|
|
image_transformed = torch.stack(image_transformed, dim=0)
|
|
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
|
|
padded_images = image_transformed
|
|
image_sizes = shapes
|
|
|
|
data = {"pixel_values": padded_images,
|
|
"image_sizes": image_sizes,
|
|
"num_img_tokens": num_img_tokens
|
|
}
|
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
|
|
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
|
|
|
|
transformers.Phi3VImageProcessor = Phi3VImageProcessor
|
|
|
|
class Phi3VProcessor(ProcessorMixin):
|
|
r"""
|
|
Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
|
|
|
|
[`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
|
[`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
|
|
|
|
Args:
|
|
image_processor ([`Phi3VImageProcessor`], *optional*):
|
|
The image processor is a required input.
|
|
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
|
The tokenizer is a required input.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
image_processor_class = "Phi3VImageProcessor"
|
|
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
|
special_image_token = "<|image|>"
|
|
|
|
def __init__(self, image_processor, tokenizer):
|
|
self.image_processor = image_processor
|
|
self.tokenizer = tokenizer
|
|
self.num_img_tokens = image_processor.num_img_tokens
|
|
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
|
|
|
|
def __call__(
|
|
self,
|
|
text: Union[TextInput, List[TextInput]],
|
|
images: ImageInput = None,
|
|
padding: Union[bool, str, PaddingStrategy] = False,
|
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
|
max_length=None,
|
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
|
) -> BatchFeature:
|
|
"""
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
|
Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
|
of the above two methods for more information.
|
|
|
|
Args:
|
|
text (`str`, `List[str]`, `List[List[str]]`):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
tensor. Both channels-first and channels-last formats are supported.
|
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
|
index) among:
|
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
|
acceptable input length for the model if that argument is not provided.
|
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
|
lengths).
|
|
max_length (`int`, *optional*):
|
|
Maximum length of the returned list and optionally padding length (see above).
|
|
truncation (`bool`, *optional*):
|
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Acceptable values are:
|
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
|
|
Returns:
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
`None`).
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
|
"""
|
|
if images is not None:
|
|
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
|
else:
|
|
image_inputs = {}
|
|
inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
|
|
return inputs
|
|
|
|
def calc_num_image_tokens(self, images: ImageInput):
|
|
""" Calculate the number of image tokens for each image.
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
"""
|
|
return self.image_processor.calc_num_image_tokens(images)
|
|
|
|
def calc_num_image_tokens_from_image_size(self, width, height):
|
|
""" Calculate the number of image token for an image with given width and height.
|
|
Args:
|
|
width (`int`):
|
|
Width of the image.
|
|
height (`int`):
|
|
Height of the image.
|
|
"""
|
|
return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
|
|
|
|
|
|
@property
|
|
def special_image_token_id(self):
|
|
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
|
|
|
def get_special_image_token_id(self):
|
|
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
|
|
|
def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
|
|
|
|
if not len(images):
|
|
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
|
|
return BatchFeature(data={**model_inputs})
|
|
|
|
pattern = r"<\|image_\d+\|>"
|
|
prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
|
|
|
|
if 'num_img_tokens' in images:
|
|
num_img_tokens = images['num_img_tokens']
|
|
else:
|
|
assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
|
|
num_crops = images['num_crops']
|
|
num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
|
|
|
|
images, image_sizes = images['pixel_values'], images['image_sizes']
|
|
|
|
|
|
image_tags = re.findall(pattern, texts)
|
|
|
|
|
|
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
|
|
unique_image_ids = sorted(list(set(image_ids)))
|
|
|
|
|
|
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
|
|
|
|
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
|
|
|
|
image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
|
|
|
|
def insert_separator(X, sep_list):
|
|
if len(X) > len(sep_list):
|
|
sep_list.append([])
|
|
return [ele for sublist in zip(X, sep_list) for ele in sublist]
|
|
input_ids = []
|
|
offset = 0
|
|
for x in insert_separator(prompt_chunks, image_ids_pad):
|
|
input_ids.extend(x[offset:])
|
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
|
|
attention_mask = (input_ids > -1000000).to(torch.long)
|
|
|
|
return BatchFeature(data={"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": images,
|
|
"image_sizes": image_sizes})
|
|
|
|
|
|
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
@property
|
|
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |