File size: 4,467 Bytes
065e53e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# phi3
[![Model Card](https://img.shields.io/badge/Hugging%20Face-Model%20Card-blue)](https://huggingface.co/username/phi3)
## Description
**phi3** is a fine-tuned version of phi-3, specifically trained on mental health therapist conversational data. This model is designed to assist in mental health support, providing empathetic and knowledgeable responses in a conversational setting.
## Installation
To use this model, you will need to install the following dependencies:
```bash
pip install transformers
pip install torch # or tensorflow depending on your preference
```
## Usage
Here is how you can load and use the model in your code:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("username/phi3")
model = AutoModelForCausalLM.from_pretrained("username/phi3")
# Example usage
chat_template = """
<|system|>
You are a compassionate mental health therapist. You listen to your clients attentively and provide thoughtful, empathetic responses to help them navigate their emotions and mental health challenges.
<|end|>
<|user|>
I've been feeling really down lately. What should I do?
<|end|>
<|assistant|>
"""
inputs = tokenizer(chat_template, return_tensors="pt")
outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Inference
Provide example code for performing inference with your model:
```python
# Example inference
user_input = "I've been feeling really down lately. What should I do?"
chat_template = f"""
<|system|>
You are a compassionate mental health therapist. You listen to your clients attentively and provide thoughtful, empathetic responses to help them navigate their emotions and mental health challenges.
<|end|>
<|user|>
I've been feeling really down lately. What should I do?
<|end|>
<|assistant|>
"""
inputs = tokenizer(chat_template, return_tensors="pt")
outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Training
If your model can be trained further, provide instructions for training:
```python
# Example training code
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
```
## Training Details
### Training Data
The model was fine-tuned on a dataset of conversational data from mental health therapy sessions. This dataset includes a variety of scenarios and responses typical of therapeutic interactions to ensure the model provides empathetic and helpful advice.
### Training Procedure
The model was fine-tuned using a standard training approach, optimizing for empathy and relevance in responses. Training was conducted on [describe hardware, e.g., GPUs, TPUs] over [number of epochs] epochs with [any relevant hyperparameters].
## Evaluation
### Metrics
The model was evaluated using the following metrics:
- **Accuracy**: X%
- **Empathy Score**: Y%
- **Relevance Score**: Z%
### Comparison
The performance of phi3 was benchmarked against other conversational models in the mental health domain, demonstrating superior empathy and contextual understanding.
## Limitations and Biases
While phi3 is highly effective, it may have limitations in the following areas:
- It may not be suitable for providing critical mental health interventions.
- There may be biases present in the training data that could affect responses.
## How to Contribute
We welcome contributions! Please see our [contributing guidelines](link_to_contributing_guidelines) for more information on how to contribute to this project.
## License
This model is licensed under the [MIT License](LICENSE).
## Acknowledgements
We would like to thank the contributors and the creators of the datasets used for training this model.
```
### Tips for Completing the Template
1. **Replace placeholders** (like `username`, `training data`, `evaluation metrics`) with your actual data.
2. **Include any additional information** specific to your model or training process.
3. **Keep the document updated** as the model evolves or more information becomes available. |