Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ The model files in this repository are the models used in this paper [The CHiME-
|
|
7 |
NeMo Team’s DASR System](https://arxiv.org/pdf/2310.12378.pdf).
|
8 |
|
9 |
## 1. Voice Activity Detection (VAD) Model:
|
10 |
-
### **MarbleNet_frame_VAD_chime7_Acrobat.nemo**
|
11 |
- This model is based on [NeMo MarbleNet VAD model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/models.html#marblenet-vad).
|
12 |
- For validation, we use dataset comprises the CHiME-6 development subset as well as 50 hours of simulated audio data.
|
13 |
- The simulated data is generated using the [NeMo multi-speaker data simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb)
|
@@ -17,13 +17,13 @@ on [VoxCeleb1&2 datasets](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.ht
|
|
17 |
|
18 |
|
19 |
## 2. Speaker Diarization Model: Multi-scale Diarization Decoder (MSDD-v2)
|
20 |
-
### **MSDD_v2_PALO_100ms_intrpl_3scales.nemo**
|
21 |
|
22 |
Our DASR system is based on the speaker diarization system using the multi-scale diarization decoder (MSDD).
|
23 |
- MSDD Reference: [Park et al. (2022)](https://arxiv.org/pdf/2203.15974.pdf)
|
24 |
- MSDD-v2 speaker diarization system employs a multi-scale embedding approach and utilizes TitaNet speaker embedding extractor.
|
25 |
- TitaNet Reference: [Koluguri et al. (2022)](https://arxiv.org/abs/2110.04410)
|
26 |
-
- TitaNet Model is included in
|
27 |
- Unlike the system that uses a multi-layer LSTM architecture, we employ a four-layer Transformer architecture with a hidden size of 384.
|
28 |
- This neural model generates logit values indicating speaker existence.
|
29 |
- Our diarization model is trained on approximately 3,000 hours of simulated audio mixture data from the same multi-speaker data simulator used in VAD model training, drawing from VoxCeleb1&2 and LibriSpeech datasets.
|
@@ -32,7 +32,7 @@ on [VoxCeleb1&2 datasets](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.ht
|
|
32 |
|
33 |
|
34 |
## 3. Automatic Speech Recognition (ASR) model
|
35 |
-
### **FastConformerXL-RNNT-chime7-GSS-finetuned.nemo**
|
36 |
- This ASR model is based on [NeMo FastConformer XL model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
|
37 |
- Single-channel audio generated using a multi-channel front-end (Guided Source Separation, GSS) is transcribed using a 0.6B parameter Conformer-based transducer (RNNT) model.
|
38 |
- Model Reference: [Gulati et al. (2020)](https://arxiv.org/abs/2005.08100)
|
@@ -47,6 +47,7 @@ on [VoxCeleb1&2 datasets](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.ht
|
|
47 |
## 4. Language Model for ASR Decoding: KenLM Model
|
48 |
### **[**ASR_LM_chime7_only.kenlm**](https://huggingface.co/chime-dasr/nemo_baseline_models/blob/main/ASR_LM_chime7_only.kenlm)**
|
49 |
|
|
|
50 |
- We apply a word-piece level N-gram language model using byte-pair-encoding (BPE) tokens.
|
51 |
- This approach utilizes the SentencePiece and KenLM toolkits, based on the transcription of CHiME-7 train and dev sets.
|
52 |
- SentencePiece: [Kudo and Richardson (2018)](https://arxiv.org/abs/1808.06226)
|
|
|
7 |
NeMo Team’s DASR System](https://arxiv.org/pdf/2310.12378.pdf).
|
8 |
|
9 |
## 1. Voice Activity Detection (VAD) Model:
|
10 |
+
### **[**MarbleNet_frame_VAD_chime7_Acrobat.nemo**](https://huggingface.co/chime-dasr/nemo_baseline_models/blob/main/MarbleNet_frame_VAD_chime7_Acrobat.nemo)**
|
11 |
- This model is based on [NeMo MarbleNet VAD model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/models.html#marblenet-vad).
|
12 |
- For validation, we use dataset comprises the CHiME-6 development subset as well as 50 hours of simulated audio data.
|
13 |
- The simulated data is generated using the [NeMo multi-speaker data simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb)
|
|
|
17 |
|
18 |
|
19 |
## 2. Speaker Diarization Model: Multi-scale Diarization Decoder (MSDD-v2)
|
20 |
+
### **[**MSDD_v2_PALO_100ms_intrpl_3scales.nemo**](https://huggingface.co/chime-dasr/nemo_baseline_models/blob/main/MSDD_v2_PALO_100ms_intrpl_3scales.nemo)**
|
21 |
|
22 |
Our DASR system is based on the speaker diarization system using the multi-scale diarization decoder (MSDD).
|
23 |
- MSDD Reference: [Park et al. (2022)](https://arxiv.org/pdf/2203.15974.pdf)
|
24 |
- MSDD-v2 speaker diarization system employs a multi-scale embedding approach and utilizes TitaNet speaker embedding extractor.
|
25 |
- TitaNet Reference: [Koluguri et al. (2022)](https://arxiv.org/abs/2110.04410)
|
26 |
+
- TitaNet Model is included in [MSDD-v2 .nemo checkpoint file]((https://huggingface.co/chime-dasr/nemo_baseline_models/blob/main/MSDD_v2_PALO_100ms_intrpl_3scales.nemo)).
|
27 |
- Unlike the system that uses a multi-layer LSTM architecture, we employ a four-layer Transformer architecture with a hidden size of 384.
|
28 |
- This neural model generates logit values indicating speaker existence.
|
29 |
- Our diarization model is trained on approximately 3,000 hours of simulated audio mixture data from the same multi-speaker data simulator used in VAD model training, drawing from VoxCeleb1&2 and LibriSpeech datasets.
|
|
|
32 |
|
33 |
|
34 |
## 3. Automatic Speech Recognition (ASR) model
|
35 |
+
### **[**FastConformerXL-RNNT-chime7-GSS-finetuned.nemo**](https://huggingface.co/chime-dasr/nemo_baseline_models/blob/main/FastConformerXL-RNNT-chime7-GSS-finetuned.nemo)**
|
36 |
- This ASR model is based on [NeMo FastConformer XL model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
|
37 |
- Single-channel audio generated using a multi-channel front-end (Guided Source Separation, GSS) is transcribed using a 0.6B parameter Conformer-based transducer (RNNT) model.
|
38 |
- Model Reference: [Gulati et al. (2020)](https://arxiv.org/abs/2005.08100)
|
|
|
47 |
## 4. Language Model for ASR Decoding: KenLM Model
|
48 |
### **[**ASR_LM_chime7_only.kenlm**](https://huggingface.co/chime-dasr/nemo_baseline_models/blob/main/ASR_LM_chime7_only.kenlm)**
|
49 |
|
50 |
+
- This KenLM model is trained solely on CHiME7-DASR datasets (Mixer6, CHiME6, DipCo).
|
51 |
- We apply a word-piece level N-gram language model using byte-pair-encoding (BPE) tokens.
|
52 |
- This approach utilizes the SentencePiece and KenLM toolkits, based on the transcription of CHiME-7 train and dev sets.
|
53 |
- SentencePiece: [Kudo and Richardson (2018)](https://arxiv.org/abs/1808.06226)
|