--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-multi_news-headline results: [] --- # pegasus-multi_news-headline This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4421 - Rouge1: 41.616 - Rouge2: 22.922 - Rougel: 35.2189 - Rougelsum: 35.3561 - Gen Len: 33.9532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6637 | 1.0 | 31200 | 1.4877 | 41.0996 | 22.579 | 34.9311 | 35.0611 | 34.3431 | | 1.4395 | 2.0 | 62400 | 1.4388 | 41.6075 | 22.8274 | 35.2051 | 35.3526 | 33.7965 | | 1.3137 | 3.0 | 93600 | 1.4421 | 41.616 | 22.922 | 35.2189 | 35.3561 | 33.9532 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3