File size: 169,814 Bytes
78aa4ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "starter_notebook.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true,
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.6"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/ruohoruotsi/masakhane/blob/master/en-ish/jw300-baseline/English_to_Esan_BPE_notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Igc5itf-xMGj"
},
"source": [
"# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x4fXCKCf36IK"
},
"source": [
"## Note before beginning:\n",
"### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
"\n",
"### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
"\n",
"### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
"\n",
"### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
"\n",
"### - Once you've gotten a result for your language, please attach and email your notebook that generated it to masakhanetranslation@gmail.com\n",
"\n",
"### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "l929HimrxS0a"
},
"source": [
"## Retrieve your data & make a parallel corpus\n",
"\n",
"If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
"\n",
"Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "oGRmDELn7Az0",
"outputId": "2bf6e5b4-7f40-4215-f56f-5965436a3068",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 122
}
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"text": [
"Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
"\n",
"Enter your authorization code:\n",
"··········\n",
"Mounted at /content/drive\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "Cn3tgQLzUxwn",
"colab": {}
},
"source": [
"# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
"# These will also become the suffix's of all vocab and corpus files used throughout\n",
"import os\n",
"source_language = \"en\"\n",
"target_language = \"ish\" \n",
"lc = False # If True, lowercase the data.\n",
"seed = 42 # Random seed for shuffling.\n",
"tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
"\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"os.environ[\"tag\"] = tag\n",
"\n",
"# This will save it to a folder in our gdrive instead!\n",
"!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
"os.environ[\"gdrive_path\"] = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "kBSgJHEw7Nvx",
"outputId": "6e4c35c6-fd0c-4b68-d034-0a3ec43cfb9b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"!echo $gdrive_path"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"/content/drive/My Drive/masakhane/en-ish-baseline\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "gA75Fs9ys8Y9",
"outputId": "4e11025d-c761-464e-e901-317aef9e0eb4",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 102
}
},
"source": [
"# Install opus-tools\n",
"! pip install opustools-pkg"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting opustools-pkg\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
"\r\u001b[K |████ | 10kB 24.8MB/s eta 0:00:01\r\u001b[K |████████ | 20kB 1.7MB/s eta 0:00:01\r\u001b[K |████████████▏ | 30kB 2.6MB/s eta 0:00:01\r\u001b[K |████████████████▏ | 40kB 1.7MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 51kB 2.1MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 61kB 2.5MB/s eta 0:00:01\r\u001b[K |████████████████████████████▎ | 71kB 2.9MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 81kB 2.5MB/s \n",
"\u001b[?25hInstalling collected packages: opustools-pkg\n",
"Successfully installed opustools-pkg-0.0.52\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "xq-tDZVks7ZD",
"outputId": "d3b5a669-b7d6-44d0-fab0-92e38a38f616",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
}
},
"source": [
"# Downloading our corpus\n",
"! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
"\n",
"# extract the corpus file\n",
"! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"\n",
"Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-ish.xml.gz not found. The following files are available for downloading:\n",
"\n",
" 60 KB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-ish.xml.gz\n",
" 263 MB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en.zip\n",
" 624 KB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/ish.zip\n",
"\n",
" 264 MB Total size\n",
"./JW300_latest_xml_en-ish.xml.gz ... 100% of 60 KB\n",
"./JW300_latest_xml_en.zip ... 100% of 263 MB\n",
"./JW300_latest_xml_ish.zip ... 100% of 624 KB\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "n48GDRnP8y2G",
"colab_type": "code",
"outputId": "9db9104f-9cd2-4af2-aa1e-67d184495313",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 578
}
},
"source": [
"# Download the global test set.\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
" \n",
"# And the specific test set for this language pair.\n",
"os.environ[\"trg\"] = target_language \n",
"os.environ[\"src\"] = source_language \n",
"\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
"! mv test.en-$trg.en test.en\n",
"! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
"! mv test.en-$trg.$trg test.$trg"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"--2020-01-26 05:58:13-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 277791 (271K) [text/plain]\n",
"Saving to: ‘test.en-any.en’\n",
"\n",
"\rtest.en-any.en 0%[ ] 0 --.-KB/s \rtest.en-any.en 100%[===================>] 271.28K --.-KB/s in 0.06s \n",
"\n",
"2020-01-26 05:58:14 (4.70 MB/s) - ‘test.en-any.en’ saved [277791/277791]\n",
"\n",
"--2020-01-26 05:58:14-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-ish.en\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 24189 (24K) [text/plain]\n",
"Saving to: ‘test.en-ish.en’\n",
"\n",
"test.en-ish.en 100%[===================>] 23.62K --.-KB/s in 0.01s \n",
"\n",
"2020-01-26 05:58:14 (1.82 MB/s) - ‘test.en-ish.en’ saved [24189/24189]\n",
"\n",
"--2020-01-26 05:58:16-- https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-ish.ish\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 31664 (31K) [text/plain]\n",
"Saving to: ‘test.en-ish.ish’\n",
"\n",
"test.en-ish.ish 100%[===================>] 30.92K --.-KB/s in 0.01s \n",
"\n",
"2020-01-26 05:58:16 (2.32 MB/s) - ‘test.en-ish.ish’ saved [31664/31664]\n",
"\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NqDG-CI28y2L",
"colab_type": "code",
"outputId": "59a385f1-9d0d-4436-fe82-107c2b18df55",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"# Read the test data to filter from train and dev splits.\n",
"# Store english portion in set for quick filtering checks.\n",
"en_test_sents = set()\n",
"filter_test_sents = \"test.en-any.en\"\n",
"j = 0\n",
"with open(filter_test_sents) as f:\n",
" for line in f:\n",
" en_test_sents.add(line.strip())\n",
" j += 1\n",
"print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded 3571 global test sentences to filter from the training/dev data.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "3CNdwLBCfSIl",
"outputId": "5b6be1fa-f7af-407e-8a30-da859b29a6f5",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 159
}
},
"source": [
"import pandas as pd\n",
"\n",
"# TMX file to dataframe\n",
"source_file = 'jw300.' + source_language\n",
"target_file = 'jw300.' + target_language\n",
"\n",
"source = []\n",
"target = []\n",
"skip_lines = [] # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
"with open(source_file) as f:\n",
" for i, line in enumerate(f):\n",
" # Skip sentences that are contained in the test set.\n",
" if line.strip() not in en_test_sents:\n",
" source.append(line.strip())\n",
" else:\n",
" skip_lines.append(i) \n",
"with open(target_file) as f:\n",
" for j, line in enumerate(f):\n",
" # Only add to corpus if corresponding source was not skipped.\n",
" if j not in skip_lines:\n",
" target.append(line.strip())\n",
" \n",
"print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
" \n",
"df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
"# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
"#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
"df.head(3)"
],
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
"Loaded data and skipped 426/6114 lines since contained in test set.\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>source_sentence</th>\n",
" <th>target_sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3 They Offered Themselves Willingly — In Mad...</td>\n",
" <td>3 Eria Ne Tobele Zegbere — bhi Madagascar</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>7 “ He Gives Power to the Tired One ”</td>\n",
" <td>7 “ Ọle Re Ahu Nin Ọria Nin Egbe Lọle ”</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>When we feel overwhelmed by the pressures of l...</td>\n",
" <td>Ahamiẹn ọkakale nan miẹn bhi iẹnlẹn re egbe lọ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" source_sentence target_sentence\n",
"0 3 They Offered Themselves Willingly — In Mad... 3 Eria Ne Tobele Zegbere — bhi Madagascar\n",
"1 7 “ He Gives Power to the Tired One ” 7 “ Ọle Re Ahu Nin Ọria Nin Egbe Lọle ”\n",
"2 When we feel overwhelmed by the pressures of l... Ahamiẹn ọkakale nan miẹn bhi iẹnlẹn re egbe lọ..."
]
},
"metadata": {
"tags": []
},
"execution_count": 9
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "YkuK3B4p2AkN"
},
"source": [
"## Pre-processing and export\n",
"\n",
"It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
"\n",
"In addition we will split our data into dev/test/train and export to the filesystem."
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "M_2ouEOH1_1q",
"outputId": "141a992f-c2db-4768-d8ae-ca79815ff84d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 187
}
},
"source": [
"# drop duplicate translations\n",
"df_pp = df.drop_duplicates()\n",
"\n",
"# drop conflicting translations\n",
"# (this is optional and something that you might want to comment out \n",
"# depending on the size of your corpus)\n",
"df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
"df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
"\n",
"# Shuffle the data to remove bias in dev set selection.\n",
"df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
],
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \n",
"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" import sys\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Z_1BwAApEtMk",
"colab_type": "code",
"outputId": "ec42bc46-a3fb-4db4-a699-96a663f55a42",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 428
}
},
"source": [
"# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
"# test and training sets.\n",
"! pip install fuzzywuzzy\n",
"! pip install python-Levenshtein\n",
"import time\n",
"from fuzzywuzzy import process\n",
"import numpy as np\n",
"\n",
"# reset the index of the training set after previous filtering\n",
"df_pp.reset_index(drop=False, inplace=True)\n",
"\n",
"# Remove samples from the training data set if they \"almost overlap\" with the\n",
"# samples in the test set.\n",
"\n",
"# Filtering function. Adjust pad to narrow down the candidate matches to\n",
"# within a certain length of characters of the given sample.\n",
"def fuzzfilter(sample, candidates, pad):\n",
" candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
" if len(candidates) > 0:\n",
" return process.extractOne(sample, candidates)[1]\n",
" else:\n",
" return np.nan\n",
"\n",
"# NOTE - This might run slow depending on the size of your training set. We are\n",
"# printing some information to help you track how long it would take. \n",
"scores = []\n",
"start_time = time.time()\n",
"for idx, row in df_pp.iterrows():\n",
" scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
" if idx % 1000 == 0:\n",
" hours, rem = divmod(time.time() - start_time, 3600)\n",
" minutes, seconds = divmod(rem, 60)\n",
" print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
"\n",
"# Filter out \"almost overlapping samples\"\n",
"df_pp['scores'] = scores\n",
"df_pp = df_pp[df_pp['scores'] < 95]"
],
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting fuzzywuzzy\n",
" Downloading https://files.pythonhosted.org/packages/d8/f1/5a267addb30ab7eaa1beab2b9323073815da4551076554ecc890a3595ec9/fuzzywuzzy-0.17.0-py2.py3-none-any.whl\n",
"Installing collected packages: fuzzywuzzy\n",
"Successfully installed fuzzywuzzy-0.17.0\n",
"Collecting python-Levenshtein\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
"\u001b[K |████████████████████████████████| 51kB 1.8MB/s \n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (42.0.2)\n",
"Building wheels for collected packages: python-Levenshtein\n",
" Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144676 sha256=e1c1ba0cb6ba911843732d2acf10e08c1d13193257ce85b35982c9f4eb0a1510\n",
" Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
"Successfully built python-Levenshtein\n",
"Installing collected packages: python-Levenshtein\n",
"Successfully installed python-Levenshtein-0.12.0\n",
"00:00:00.02 0.00 percent complete\n",
"00:00:21.00 19.41 percent complete\n",
"00:00:41.39 38.81 percent complete\n"
],
"name": "stdout"
},
{
"output_type": "stream",
"text": [
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n",
"WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
],
"name": "stderr"
},
{
"output_type": "stream",
"text": [
"00:01:02.08 58.22 percent complete\n",
"00:01:23.09 77.62 percent complete\n",
"00:01:44.76 97.03 percent complete\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "hxxBOCA-xXhy",
"outputId": "fea25604-9299-408f-ed1f-6d5bd2fe24c7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 819
}
},
"source": [
"# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
"# We use 1000 dev test and the given test set.\n",
"import csv\n",
"\n",
"# Do the split between dev/train and create parallel corpora\n",
"num_dev_patterns = 1000\n",
"\n",
"# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
"if lc: # Julia: making lowercasing optional\n",
" df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
" df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
"\n",
"# Julia: test sets are already generated\n",
"dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
"stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
"\n",
"with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
" for index, row in stripped.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
" \n",
"with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
" for index, row in dev.iterrows():\n",
" src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
" trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
"\n",
"#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False) # Herman: Added `header=False` everywhere\n",
"#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False) # Julia: Problematic handling of quotation marks.\n",
"\n",
"#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
"#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
"\n",
"# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
"! head train.*\n",
"! head dev.*"
],
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": [
"==> train.en <==\n",
"Their unity would give a powerful witness , offering clear evidence that Jehovah had sent Jesus to the earth to do God’s will .\n",
"In the first century , some Christians sold items that they owned , such as fields or houses , and brought the money to the apostles .\n",
"Brothers and sisters who remain single because they want to obey the admonition to marry “ only in the Lord ” make up another group that merits encouragement .\n",
"How can we avoid misusing our God - given freedom ?\n",
"How grateful we are to be blessed with answered prayers and friendship with Jesus !\n",
"However , there are some indications of Paul’s appearance .\n",
"18 What Does It Mean to Be a Spiritual Person ?\n",
"The psalmist observed : “ It is good to give thanks to Jehovah . . .\n",
"We do well to ask ourselves : ‘ Do meetings and field service take second place to entertainment ?\n",
"Joy , in contrast , is a deep - seated quality of the heart .\n",
"\n",
"==> train.ish <==\n",
"Okugbe nọnsele dẹ wo sabọ sọsali ọbhọ ghe , Jehova gene ji Jesu re bhi ọne otọ nan nin ọle dọ lu iho nọnsole . Ahoẹmhọn - egbe hi iyaman nan ha rẹ gene lẹn edibo nesi Jesu .\n",
"3 : 21 , 22 ; 35 : 22 - 24 ) Bhi ore nọn hẹnhẹn , kristiẹn eso da khiẹn emhin nin ele mhọnlẹn , emhin bọsi uwa , la otọ .\n",
"Ẹbho ọbhebhe ne yẹ guanọ izebhudu hi , ibhio mhan ne bha lọnmhẹn ọdọ la ne bha re okhuo ranmhude ele ho nin ele rẹkhan adia nọn ribhi Baibo nọn yọle ghe , ọria nọn ribhi oga ọkpa mhan ha rẹkhan . ( 1 Cor . 7 : 39 ) Iriọ sẹyẹ nọn rẹji ene amhẹn .\n",
"Be imhan ha lu nin mhan hẹi re ọne isẹhoa nin Osẹnobulua re nin mhan khiẹnlẹn ?\n",
"4 : 13 ) Ẹsele nọn khua wo nọn ghe Osẹnobulua họn erọnmhọn nọnsẹmhan , ghe mhan dẹ sabọ deba iJesu ha mhọn ikolu !\n",
"Ọkpakinọn , emhin eso ribhọ ne ri ebi Paul diayẹ man .\n",
"18 Be Ọria Nọn Mun Oga Mhọn Nọnsẹn Rẹ Lu Emhin Yẹ ?\n",
"Ọnan zẹle nin ọnọn gbẹn Ps . 92 : 1 , 4 bhi Baibo da yọle : “ Ọmhẹnmhin nan rẹ ha re ekhuẹnmhẹn ji Jehova . . .\n",
"Nin mhan nọọn egbe mhan ene inọnta nan : ‘ iregbe re ahoho mhẹn mun kalo gbera ikolo oga bi itẹmhọn Osẹnobulua ?\n",
"Ọnyẹnmhẹn , ọle hi eghọnghọn ọsajie nọn vuọn ọria udu .\n",
"==> dev.en <==\n",
"I WAS raised in Graz , Austria .\n",
"In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"We should also strive to help others spiritually .\n",
"Still others are struggling to provide , not luxury items , but just the basic necessities for their families .\n",
"Eventually , their love of material things can choke any love they had for God . — Matt .\n",
"What can help Christian parents succeed in raising their children to serve Jehovah ?\n",
"Why not be resolved to have a positive influence , promoting unity among your brothers and sisters ?\n",
"By 1963 there were about 160 Witnesses in Kyrgyzstan , many of them originally from Germany , Ukraine , and Russia .\n",
"That is so even if it seems to go unnoticed .\n",
"\n",
"==> dev.ish <==\n",
"AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"Ọ manman nọghọ eso rẹ sabọ gbẹloghe azagba - uwa nọnsele .\n",
"( Matt . 6 : 24 ) Bhiriọ , oyẹẹ nin ele mhọn da ẹfe ki re oyẹẹ nin ele mhọn da Osẹnobulua wẹghẹa . — Matt .\n",
"Be bhọ ene biẹ ọmọn ha rẹ sabọ bẹẹ imọn nesele wanre yẹ nin ene imọn da ha ga iJehova ?\n",
"Dọnmhegbe nin uwẹ ha yi ijiẹmhin esili , nin uwẹ da sabọ ha tuẹn okugbe nọn ribhi ẹwẹ mhan okhun .\n",
"Bhi ukpe 1963 , Esali Jehova ne bun sẹbhi 160 , ele ha ribhi Kyrgyzstan . Germany , Ukraine bi Russia , ọle ene bun nẹ bhi ẹwẹ ele nan vae .\n",
"Ahamiẹn mhan re ọkhọle rebhe rẹ tuẹ ẹbho , ọ ki sẹ ele otọ - ẹkẹ aharẹmiẹn ọbha tan .\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "epeCydmCyS8X"
},
"source": [
"\n",
"\n",
"---\n",
"\n",
"\n",
"## Installation of JoeyNMT\n",
"\n",
"JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io) "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "iBRMm4kMxZ8L",
"outputId": "d632e846-5139-4fae-ea21-087beae32f0a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Install JoeyNMT\n",
"! git clone https://github.com/joeynmt/joeynmt.git\n",
"! cd joeynmt; pip3 install ."
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"Cloning into 'joeynmt'...\n",
"remote: Enumerating objects: 61, done.\u001b[K\n",
"remote: Counting objects: 100% (61/61), done.\u001b[K\n",
"remote: Compressing objects: 100% (39/39), done.\u001b[K\n",
"remote: Total 2245 (delta 34), reused 34 (delta 22), pack-reused 2184\u001b[K\n",
"Receiving objects: 100% (2245/2245), 2.63 MiB | 8.83 MiB/s, done.\n",
"Resolving deltas: 100% (1555/1555), done.\n",
"Processing /content/joeynmt\n",
"Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (6.2.2)\n",
"Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.17.5)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (42.0.2)\n",
"Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.3.1)\n",
"Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
"Collecting sacrebleu>=1.3.6\n",
" Downloading https://files.pythonhosted.org/packages/45/31/1a135b964c169984b27fb2f7a50280fa7f8e6d9d404d8a9e596180487fd1/sacrebleu-1.4.3-py3-none-any.whl\n",
"Collecting subword-nmt\n",
" Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.1.2)\n",
"Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.9.0)\n",
"Collecting pyyaml>=5.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/3d/d9/ea9816aea31beeadccd03f1f8b625ecf8f645bd66744484d162d84803ce5/PyYAML-5.3.tar.gz (268kB)\n",
"\u001b[K |████████████████████████████████| 276kB 13.9MB/s \n",
"\u001b[?25hCollecting pylint\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e9/59/43fc36c5ee316bb9aeb7cf5329cdbdca89e5749c34d5602753827c0aa2dc/pylint-2.4.4-py3-none-any.whl (302kB)\n",
"\u001b[K |████████████████████████████████| 307kB 68.5MB/s \n",
"\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
"Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.33.6)\n",
"Requirement already satisfied: tensorflow-estimator==1.15.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.1)\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.1.8)\n",
"Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: tensorboard<1.16.0,>=1.15.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.0.8)\n",
"Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
"Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.11.2)\n",
"Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.2)\n",
"Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.15.0)\n",
"Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.8.1)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.21.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.28.1)\n",
"Requirement already satisfied: typing in /usr/local/lib/python3.6/dist-packages (from sacrebleu>=1.3.6->joeynmt==0.0.1) (3.6.6)\n",
"Collecting portalocker\n",
" Downloading https://files.pythonhosted.org/packages/91/db/7bc703c0760df726839e0699b7f78a4d8217fdc9c7fcb1b51b39c5a22a4e/portalocker-1.5.2-py2.py3-none-any.whl\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.6.1)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.6)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.1.0)\n",
"Requirement already satisfied: pandas>=0.15.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (0.25.3)\n",
"Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.4.1)\n",
"Collecting isort<5,>=4.2.5\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
"\u001b[K |████████████████████████████████| 51kB 10.4MB/s \n",
"\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
" Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
"Collecting astroid<2.4,>=2.3.0\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ad/ae/86734823047962e7b8c8529186a1ac4a7ca19aaf1aa0c7713c022ef593fd/astroid-2.3.3-py3-none-any.whl (205kB)\n",
"\u001b[K |████████████████████████████████| 215kB 80.4MB/s \n",
"\u001b[?25hRequirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (0.16.0)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.16.0,>=1.15.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.1)\n",
"Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.8->tensorflow>=1.14->joeynmt==0.0.1) (2.8.0)\n",
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
"Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
"Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.8)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2019.11.28)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.15.2->seaborn->joeynmt==0.0.1) (2018.9)\n",
"Collecting lazy-object-proxy==1.4.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
"\u001b[K |████████████████████████████████| 61kB 10.8MB/s \n",
"\u001b[?25hCollecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
"\u001b[K |████████████████████████████████| 747kB 69.6MB/s \n",
"\u001b[?25hBuilding wheels for collected packages: joeynmt, pyyaml\n",
" Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=72136 sha256=5ff22cc6fb3fa347f93ac52f0b9eebb02dbeba0e941ab1b9fc2720da0647d67d\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-usai0n22/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
" Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pyyaml: filename=PyYAML-5.3-cp36-cp36m-linux_x86_64.whl size=44229 sha256=61c6e1f112712bd9c5557339df670a525dcb3c78fc8ec314447030b2db0236eb\n",
" Stored in directory: /root/.cache/pip/wheels/e4/76/4d/a95b8dd7b452b69e8ed4f68b69e1b55e12c9c9624dd962b191\n",
"Successfully built joeynmt pyyaml\n",
"Installing collected packages: portalocker, sacrebleu, subword-nmt, pyyaml, isort, mccabe, lazy-object-proxy, typed-ast, astroid, pylint, joeynmt\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
"Successfully installed astroid-2.3.3 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 portalocker-1.5.2 pylint-2.4.4 pyyaml-5.3 sacrebleu-1.4.3 subword-nmt-0.3.7 typed-ast-1.4.1\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AaE77Tcppex9"
},
"source": [
"# Preprocessing the Data into Subword BPE Tokens\n",
"\n",
"- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
"\n",
"- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
"\n",
"- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "H-TyjtmXB1mL",
"outputId": "4a2e150f-749f-4235-874d-c397f1502f52",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 408
}
},
"source": [
"# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
"# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
"\n",
"# Do subword NMT\n",
"from os import path\n",
"os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
"os.environ[\"tgt\"] = target_language\n",
"\n",
"# Learn BPEs on the training data.\n",
"os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
"! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
"\n",
"# Apply BPE splits to the development and test data.\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
"\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
"! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
"\n",
"# Create directory, move everyone we care about to the correct location\n",
"! mkdir -p $data_path\n",
"! cp train.* $data_path\n",
"! cp test.* $data_path\n",
"! cp dev.* $data_path\n",
"! cp bpe.codes.4000 $data_path\n",
"! ls $data_path\n",
"\n",
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\"\n",
"\n",
"# Create that vocab using build_vocab\n",
"! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
"! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path joeynmt/data/$src$tgt/vocab.txt\n",
"\n",
"# Some output\n",
"! echo \"BPE Ẹ̀sán Sentences\"\n",
"! tail -n 5 test.bpe.$tgt\n",
"! echo \"Combined BPE Vocab\"\n",
"! tail -n 10 joeynmt/data/$src$tgt/vocab.txt # Herman\n",
"! cp joeynmt/data/$src$tgt/vocab.txt \"$gdrive_path\""
],
"execution_count": 14,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.en\t test.bpe.ish test.ish\t train.en\n",
"dev.bpe.en\tdev.ish test.en\t train.bpe.en train.ish\n",
"dev.bpe.ish\ttest.bpe.en test.en-any.en train.bpe.ish\n",
"bpe.codes.4000\tdev.en\t test.bpe.ish test.ish\t train.en\n",
"dev.bpe.en\tdev.ish test.en\t train.bpe.en train.ish\n",
"dev.bpe.ish\ttest.bpe.en test.en-any.en train.bpe.ish\n",
"BPE Ẹ̀sán Sentences\n",
"Agb@@ ada ọsi ẹlinmhin nọn khiale ( Fẹ uduọle 19 - 20 ghe )\n",
"Jehova dẹ rẹkpa mhan nin mhan da sabọ nin ọle su@@ an .\n",
"( b ) Emhin nela mhan ha zilo nyan bhi uh@@ ọ@@ mhọn - ọta nọn ki sẹ ọle bhi egbe ?\n",
"Uwẹ be gbẹlokotọ tie ene ebe Ọ@@ kh@@ ẹ@@ ughe nọn bha sẹ bu@@ ẹ gbe nan ne dagbare ?\n",
"F@@ ẹghe si uwẹ dẹ sabọ re ewanniẹn ọbhi ene inọnta nan :\n",
"Combined BPE Vocab\n",
"LLO\n",
"fẹ@@\n",
"Jac@@\n",
"shar@@\n",
"ergy\n",
"beauti@@\n",
"resp@@\n",
"Kin@@\n",
"chy\n",
"okhan\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "IlMitUHR8Qy-",
"outputId": "41242114-8b4e-4873-a0f0-2385dfa383b3",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 68
}
},
"source": [
"# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
"! cp train.* \"$gdrive_path\"\n",
"! cp test.* \"$gdrive_path\"\n",
"! cp dev.* \"$gdrive_path\"\n",
"! cp bpe.codes.4000 \"$gdrive_path\"\n",
"! ls \"$gdrive_path\""
],
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"text": [
"bpe.codes.4000\tdev.en\t test.bpe.ish test.ish\t train.en\n",
"dev.bpe.en\tdev.ish test.en\t train.bpe.en train.ish\n",
"dev.bpe.ish\ttest.bpe.en test.en-any.en train.bpe.ish vocab.txt\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Ixmzi60WsUZ8"
},
"source": [
"# Creating the JoeyNMT Config\n",
"\n",
"JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
"\n",
"- We used Transformer architecture \n",
"- We set our dropout to reasonably high: 0.3 (recommended in [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
"\n",
"Things worth playing with:\n",
"- The batch size (also recommended to change for low-resourced languages)\n",
"- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
"- The decoder options (beam_size, alpha)\n",
"- Evaluation metrics (BLEU versus Crhf4)"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "PIs1lY2hxMsl",
"colab": {}
},
"source": [
"# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
"# (You can of course play with all the parameters if you'd like!)\n",
"\n",
"name = '%s%s' % (source_language, target_language)\n",
"gdrive_path = os.environ[\"gdrive_path\"]\n",
"\n",
"# Create the config\n",
"config = \"\"\"\n",
"name: \"{name}_transformer\"\n",
"\n",
"data:\n",
" src: \"{source_language}\"\n",
" trg: \"{target_language}\"\n",
" train: \"{gdrive_path}/train.bpe\"\n",
" dev: \"{gdrive_path}/dev.bpe\"\n",
" test: \"{gdrive_path}/test.bpe\"\n",
" level: \"bpe\"\n",
" lowercase: False\n",
" max_sent_length: 100\n",
" src_vocab: \"{gdrive_path}/vocab.txt\"\n",
" trg_vocab: \"{gdrive_path}/vocab.txt\"\n",
"\n",
"testing:\n",
" beam_size: 5\n",
" alpha: 1.0\n",
"\n",
"training:\n",
" # load_model: \"{gdrive_path}/models/{name}_transformer_orig/142000.ckpt\" # if uncommented, load a pre-trained model from this checkpoint\n",
" random_seed: 42\n",
" optimizer: \"adam\"\n",
" normalization: \"tokens\"\n",
" adam_betas: [0.9, 0.999] \n",
" scheduling: \"plateau\" # TODO: try switching from plateau to Noam scheduling\n",
" patience: 5 # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
" learning_rate_factor: 0.5 # factor for Noam scheduler (used with Transformer)\n",
" learning_rate_warmup: 1000 # warmup steps for Noam scheduler (used with Transformer)\n",
" decrease_factor: 0.7\n",
" loss: \"crossentropy\"\n",
" learning_rate: 0.0003\n",
" learning_rate_min: 0.00000001\n",
" weight_decay: 0.0\n",
" label_smoothing: 0.1\n",
" batch_size: 4096\n",
" batch_type: \"token\"\n",
" eval_batch_size: 3600\n",
" eval_batch_type: \"token\"\n",
" batch_multiplier: 1\n",
" early_stopping_metric: \"ppl\"\n",
" epochs: 200 # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
" validation_freq: 100 # TODO: Set to at least once per epoch.\n",
" logging_freq: 100\n",
" eval_metric: \"bleu\"\n",
" model_dir: \"{gdrive_path}/models/{name}_transformer\"\n",
" overwrite: True # TODO: Set to True if you want to overwrite possibly existing models. \n",
" shuffle: True\n",
" use_cuda: True\n",
" max_output_length: 100\n",
" print_valid_sents: [0, 1, 2, 3]\n",
" keep_last_ckpts: 3\n",
"\n",
"model:\n",
" initializer: \"xavier\"\n",
" bias_initializer: \"zeros\"\n",
" init_gain: 1.0\n",
" embed_initializer: \"xavier\"\n",
" embed_init_gain: 1.0\n",
" tied_embeddings: True\n",
" tied_softmax: True\n",
" encoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
" decoder:\n",
" type: \"transformer\"\n",
" num_layers: 6\n",
" num_heads: 4 # TODO: Increase to 8 for larger data.\n",
" embeddings:\n",
" embedding_dim: 256 # TODO: Increase to 512 for larger data.\n",
" scale: True\n",
" dropout: 0.2\n",
" # typically ff_size = 4 x hidden_size\n",
" hidden_size: 256 # TODO: Increase to 512 for larger data.\n",
" ff_size: 1024 # TODO: Increase to 2048 for larger data.\n",
" dropout: 0.3\n",
"\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language)\n",
"with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
" f.write(config)\n",
"\n",
"! cp joeynmt/configs/transformer_$src$tgt.yaml \"$gdrive_path\""
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "pIifxE3Qzuvs"
},
"source": [
"# Train the Model\n",
"\n",
"This single line of joeynmt runs the training using the config we made above"
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "6ZBPFwT94WpI",
"outputId": "f13203b6-fae3-4620-ce2e-621404802448",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
}
},
"source": [
"# Train the model\n",
"# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
"# !cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml\n",
"!python3 -m joeynmt train \"$gdrive_path/transformer_$src$tgt.yaml\""
],
"execution_count": 0,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-01-26 06:00:56,685 Hello! This is Joey-NMT.\n",
"2020-01-26 06:00:58,020 Total params: 12055552\n",
"2020-01-26 06:00:58,021 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
"2020-01-26 06:01:07,828 cfg.name : enish_transformer\n",
"2020-01-26 06:01:07,829 cfg.data.src : en\n",
"2020-01-26 06:01:07,829 cfg.data.trg : ish\n",
"2020-01-26 06:01:07,829 cfg.data.train : /content/drive/My Drive/masakhane/en-ish-baseline/train.bpe\n",
"2020-01-26 06:01:07,829 cfg.data.dev : /content/drive/My Drive/masakhane/en-ish-baseline/dev.bpe\n",
"2020-01-26 06:01:07,829 cfg.data.test : /content/drive/My Drive/masakhane/en-ish-baseline/test.bpe\n",
"2020-01-26 06:01:07,829 cfg.data.level : bpe\n",
"2020-01-26 06:01:07,829 cfg.data.lowercase : False\n",
"2020-01-26 06:01:07,829 cfg.data.max_sent_length : 100\n",
"2020-01-26 06:01:07,830 cfg.data.src_vocab : /content/drive/My Drive/masakhane/en-ish-baseline/vocab.txt\n",
"2020-01-26 06:01:07,830 cfg.data.trg_vocab : /content/drive/My Drive/masakhane/en-ish-baseline/vocab.txt\n",
"2020-01-26 06:01:07,830 cfg.testing.beam_size : 5\n",
"2020-01-26 06:01:07,830 cfg.testing.alpha : 1.0\n",
"2020-01-26 06:01:07,830 cfg.training.random_seed : 42\n",
"2020-01-26 06:01:07,830 cfg.training.optimizer : adam\n",
"2020-01-26 06:01:07,830 cfg.training.normalization : tokens\n",
"2020-01-26 06:01:07,831 cfg.training.adam_betas : [0.9, 0.999]\n",
"2020-01-26 06:01:07,831 cfg.training.scheduling : plateau\n",
"2020-01-26 06:01:07,831 cfg.training.patience : 5\n",
"2020-01-26 06:01:07,831 cfg.training.learning_rate_factor : 0.5\n",
"2020-01-26 06:01:07,831 cfg.training.learning_rate_warmup : 1000\n",
"2020-01-26 06:01:07,831 cfg.training.decrease_factor : 0.7\n",
"2020-01-26 06:01:07,831 cfg.training.loss : crossentropy\n",
"2020-01-26 06:01:07,832 cfg.training.learning_rate : 0.0003\n",
"2020-01-26 06:01:07,832 cfg.training.learning_rate_min : 1e-08\n",
"2020-01-26 06:01:07,832 cfg.training.weight_decay : 0.0\n",
"2020-01-26 06:01:07,832 cfg.training.label_smoothing : 0.1\n",
"2020-01-26 06:01:07,832 cfg.training.batch_size : 4096\n",
"2020-01-26 06:01:07,832 cfg.training.batch_type : token\n",
"2020-01-26 06:01:07,832 cfg.training.eval_batch_size : 3600\n",
"2020-01-26 06:01:07,832 cfg.training.eval_batch_type : token\n",
"2020-01-26 06:01:07,832 cfg.training.batch_multiplier : 1\n",
"2020-01-26 06:01:07,833 cfg.training.early_stopping_metric : ppl\n",
"2020-01-26 06:01:07,833 cfg.training.epochs : 200\n",
"2020-01-26 06:01:07,833 cfg.training.validation_freq : 100\n",
"2020-01-26 06:01:07,833 cfg.training.logging_freq : 100\n",
"2020-01-26 06:01:07,833 cfg.training.eval_metric : bleu\n",
"2020-01-26 06:01:07,833 cfg.training.model_dir : /content/drive/My Drive/masakhane/en-ish-baseline/models/enish_transformer\n",
"2020-01-26 06:01:07,833 cfg.training.overwrite : True\n",
"2020-01-26 06:01:07,833 cfg.training.shuffle : True\n",
"2020-01-26 06:01:07,833 cfg.training.use_cuda : True\n",
"2020-01-26 06:01:07,834 cfg.training.max_output_length : 100\n",
"2020-01-26 06:01:07,834 cfg.training.print_valid_sents : [0, 1, 2, 3]\n",
"2020-01-26 06:01:07,834 cfg.training.keep_last_ckpts : 3\n",
"2020-01-26 06:01:07,834 cfg.model.initializer : xavier\n",
"2020-01-26 06:01:07,834 cfg.model.bias_initializer : zeros\n",
"2020-01-26 06:01:07,834 cfg.model.init_gain : 1.0\n",
"2020-01-26 06:01:07,834 cfg.model.embed_initializer : xavier\n",
"2020-01-26 06:01:07,835 cfg.model.embed_init_gain : 1.0\n",
"2020-01-26 06:01:07,835 cfg.model.tied_embeddings : True\n",
"2020-01-26 06:01:07,835 cfg.model.tied_softmax : True\n",
"2020-01-26 06:01:07,835 cfg.model.encoder.type : transformer\n",
"2020-01-26 06:01:07,835 cfg.model.encoder.num_layers : 6\n",
"2020-01-26 06:01:07,835 cfg.model.encoder.num_heads : 4\n",
"2020-01-26 06:01:07,835 cfg.model.encoder.embeddings.embedding_dim : 256\n",
"2020-01-26 06:01:07,835 cfg.model.encoder.embeddings.scale : True\n",
"2020-01-26 06:01:07,836 cfg.model.encoder.embeddings.dropout : 0.2\n",
"2020-01-26 06:01:07,836 cfg.model.encoder.hidden_size : 256\n",
"2020-01-26 06:01:07,836 cfg.model.encoder.ff_size : 1024\n",
"2020-01-26 06:01:07,836 cfg.model.encoder.dropout : 0.3\n",
"2020-01-26 06:01:07,836 cfg.model.decoder.type : transformer\n",
"2020-01-26 06:01:07,836 cfg.model.decoder.num_layers : 6\n",
"2020-01-26 06:01:07,836 cfg.model.decoder.num_heads : 4\n",
"2020-01-26 06:01:07,836 cfg.model.decoder.embeddings.embedding_dim : 256\n",
"2020-01-26 06:01:07,837 cfg.model.decoder.embeddings.scale : True\n",
"2020-01-26 06:01:07,837 cfg.model.decoder.embeddings.dropout : 0.2\n",
"2020-01-26 06:01:07,837 cfg.model.decoder.hidden_size : 256\n",
"2020-01-26 06:01:07,837 cfg.model.decoder.ff_size : 1024\n",
"2020-01-26 06:01:07,837 cfg.model.decoder.dropout : 0.3\n",
"2020-01-26 06:01:07,837 Data set sizes: \n",
"\ttrain 4126,\n",
"\tvalid 1000,\n",
"\ttest 343\n",
"2020-01-26 06:01:07,837 First training example:\n",
"\t[SRC] The@@ ir unity would give a powerful witness , offering clear evidence that Jehovah had sent Jesus to the earth to do God’s will .\n",
"\t[TRG] O@@ kugbe nọnsele dẹ wo sabọ sọ@@ sali ọbhọ ghe , Jehova gene ji Jesu re bhi ọne otọ nan nin ọle dọ lu iho nọns@@ ole . A@@ hoẹmhọn - egbe hi iy@@ aman nan ha rẹ gene lẹn edibo nesi Jesu .\n",
"2020-01-26 06:01:07,838 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) nin (7) ha (8) the (9) mhan\n",
"2020-01-26 06:01:07,838 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) nin (7) ha (8) the (9) mhan\n",
"2020-01-26 06:01:07,839 Number of Src words (types): 3888\n",
"2020-01-26 06:01:07,839 Number of Trg words (types): 3888\n",
"2020-01-26 06:01:07,840 Model(\n",
"\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
"\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
"\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=3888),\n",
"\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=3888))\n",
"2020-01-26 06:01:07,853 EPOCH 1\n",
"2020-01-26 06:01:14,952 Epoch 1: total training loss 264.31\n",
"2020-01-26 06:01:14,952 EPOCH 2\n",
"2020-01-26 06:01:21,821 Epoch 2: total training loss 232.20\n",
"2020-01-26 06:01:21,822 EPOCH 3\n",
"2020-01-26 06:01:22,683 Epoch 3 Step: 100 Batch Loss: 4.786351 Tokens per Sec: 13717, Lr: 0.000300\n",
"2020-01-26 06:02:05,690 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:02:05,690 Saving new checkpoint.\n",
"2020-01-26 06:02:07,204 Example #0\n",
"2020-01-26 06:02:07,205 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:02:07,206 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:02:07,206 \tHypothesis: : , , , , , , , , , .\n",
"2020-01-26 06:02:07,206 Example #1\n",
"2020-01-26 06:02:07,206 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:02:07,206 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:02:07,206 \tHypothesis: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .\n",
"2020-01-26 06:02:07,206 Example #2\n",
"2020-01-26 06:02:07,207 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:02:07,207 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:02:07,207 \tHypothesis: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .\n",
"2020-01-26 06:02:07,207 Example #3\n",
"2020-01-26 06:02:07,207 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:02:07,207 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:02:07,207 \tHypothesis: : : , , , .\n",
"2020-01-26 06:02:07,208 Validation result (greedy) at epoch 3, step 100: bleu: 0.00, loss: 116888.2266, ppl: 126.0511, duration: 44.5245s\n",
"2020-01-26 06:02:13,683 Epoch 3: total training loss 229.42\n",
"2020-01-26 06:02:13,683 EPOCH 4\n",
"2020-01-26 06:02:20,898 Epoch 4: total training loss 217.70\n",
"2020-01-26 06:02:20,898 EPOCH 5\n",
"2020-01-26 06:02:22,513 Epoch 5 Step: 200 Batch Loss: 4.343826 Tokens per Sec: 12279, Lr: 0.000300\n",
"2020-01-26 06:03:07,298 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:03:07,298 Saving new checkpoint.\n",
"2020-01-26 06:03:08,655 Example #0\n",
"2020-01-26 06:03:08,656 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:03:08,656 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:03:08,656 \tHypothesis: ( : : : ( : ( : ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:03:08,656 Example #1\n",
"2020-01-26 06:03:08,656 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:03:08,656 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:03:08,656 \tHypothesis: ( : Mhan , : : ( : ( : ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:03:08,656 Example #2\n",
"2020-01-26 06:03:08,657 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:03:08,657 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:03:08,657 \tHypothesis: Mhan , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,\n",
"2020-01-26 06:03:08,657 Example #3\n",
"2020-01-26 06:03:08,657 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:03:08,657 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:03:08,657 \tHypothesis: ( : : : Be : : Be : ( : ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:03:08,657 Validation result (greedy) at epoch 5, step 200: bleu: 0.00, loss: 112468.1953, ppl: 104.9823, duration: 46.1441s\n",
"2020-01-26 06:03:14,601 Epoch 5: total training loss 216.89\n",
"2020-01-26 06:03:14,601 EPOCH 6\n",
"2020-01-26 06:03:22,081 Epoch 6: total training loss 203.88\n",
"2020-01-26 06:03:22,081 EPOCH 7\n",
"2020-01-26 06:03:24,613 Epoch 7 Step: 300 Batch Loss: 4.409139 Tokens per Sec: 12810, Lr: 0.000300\n",
"2020-01-26 06:04:10,739 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:04:10,739 Saving new checkpoint.\n",
"2020-01-26 06:04:11,882 Example #0\n",
"2020-01-26 06:04:11,883 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:04:11,883 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:04:11,883 \tHypothesis: ( : 1 : ( : ( : ( 1 : ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:04:11,883 Example #1\n",
"2020-01-26 06:04:11,884 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:04:11,884 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:04:11,884 \tHypothesis: ( : ( : ( : ( 1 ) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:04:11,884 Example #2\n",
"2020-01-26 06:04:11,884 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:04:11,884 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:04:11,884 \tHypothesis: ( : ( ) ( ) ( ) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:04:11,885 Example #3\n",
"2020-01-26 06:04:11,885 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:04:11,885 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:04:11,885 \tHypothesis: ( : 1 : ( : ( : ( 1 : ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (\n",
"2020-01-26 06:04:11,885 Validation result (greedy) at epoch 7, step 300: bleu: 0.00, loss: 101796.1875, ppl: 67.5047, duration: 47.2717s\n",
"2020-01-26 06:04:16,689 Epoch 7: total training loss 195.63\n",
"2020-01-26 06:04:16,689 EPOCH 8\n",
"2020-01-26 06:04:24,165 Epoch 8: total training loss 189.38\n",
"2020-01-26 06:04:24,165 EPOCH 9\n",
"2020-01-26 06:04:27,495 Epoch 9 Step: 400 Batch Loss: 3.988022 Tokens per Sec: 13391, Lr: 0.000300\n",
"2020-01-26 06:05:13,678 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:05:13,679 Saving new checkpoint.\n",
"2020-01-26 06:05:14,812 Example #0\n",
"2020-01-26 06:05:14,813 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:05:14,813 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:05:14,813 \tHypothesis: Bhi , ọle da ha re egbe .\n",
"2020-01-26 06:05:14,813 Example #1\n",
"2020-01-26 06:05:14,814 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:05:14,814 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:05:14,814 \tHypothesis: Bhi , ọle da ha ha re obọ bhi ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne\n",
"2020-01-26 06:05:14,814 Example #2\n",
"2020-01-26 06:05:14,814 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:05:14,814 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:05:14,814 \tHypothesis: Bhi , ọle da ha ha re ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne\n",
"2020-01-26 06:05:14,814 Example #3\n",
"2020-01-26 06:05:14,815 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:05:14,815 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:05:14,815 \tHypothesis: Bhi , ọle da ha ha re egbe .\n",
"2020-01-26 06:05:14,815 Validation result (greedy) at epoch 9, step 400: bleu: 0.29, loss: 95543.6719, ppl: 52.1162, duration: 47.3192s\n",
"2020-01-26 06:05:19,267 Epoch 9: total training loss 184.09\n",
"2020-01-26 06:05:19,268 EPOCH 10\n",
"2020-01-26 06:05:26,809 Epoch 10: total training loss 177.01\n",
"2020-01-26 06:05:26,809 EPOCH 11\n",
"2020-01-26 06:05:31,040 Epoch 11 Step: 500 Batch Loss: 3.519213 Tokens per Sec: 12817, Lr: 0.000300\n",
"2020-01-26 06:06:16,695 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:06:16,695 Saving new checkpoint.\n",
"2020-01-26 06:06:17,717 Example #0\n",
"2020-01-26 06:06:17,717 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:06:17,718 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:06:17,718 \tHypothesis: ( 1 : 1 ) Mhan da ha re egbe .\n",
"2020-01-26 06:06:17,718 Example #1\n",
"2020-01-26 06:06:17,718 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:06:17,718 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:06:17,718 \tHypothesis: Mhan da ha ha re egbe bhi ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne oga .\n",
"2020-01-26 06:06:17,718 Example #2\n",
"2020-01-26 06:06:17,718 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:06:17,719 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:06:17,719 \tHypothesis: Bhi ọsi ene bunbun , ọle da ha re ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne ọne agbọn nan .\n",
"2020-01-26 06:06:17,719 Example #3\n",
"2020-01-26 06:06:17,719 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:06:17,719 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:06:17,719 \tHypothesis: Be bhọ mhan ha ha lu emhin nin mhan rẹ ha lu emhin nin mhan rẹ ha lu emhin nin mhan .\n",
"2020-01-26 06:06:17,719 Validation result (greedy) at epoch 11, step 500: bleu: 0.97, loss: 90320.1328, ppl: 41.9859, duration: 46.6791s\n",
"2020-01-26 06:06:20,827 Epoch 11: total training loss 173.63\n",
"2020-01-26 06:06:20,827 EPOCH 12\n",
"2020-01-26 06:06:28,309 Epoch 12: total training loss 167.96\n",
"2020-01-26 06:06:28,309 EPOCH 13\n",
"2020-01-26 06:06:33,432 Epoch 13 Step: 600 Batch Loss: 3.638573 Tokens per Sec: 13123, Lr: 0.000300\n",
"2020-01-26 06:07:19,125 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:07:19,126 Saving new checkpoint.\n",
"2020-01-26 06:07:20,267 Example #0\n",
"2020-01-26 06:07:20,269 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:07:20,269 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:07:20,269 \tHypothesis: Bhi ọsi ẹmhọanta , ọle da ha re obọ .\n",
"2020-01-26 06:07:20,269 Example #1\n",
"2020-01-26 06:07:20,269 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:07:20,269 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:07:20,270 \tHypothesis: Bhi ọsi ẹmhọanta , ọle da ha re obọ bhi ọne agbọn nan , ọle da ha re obọ .\n",
"2020-01-26 06:07:20,270 Example #2\n",
"2020-01-26 06:07:20,270 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:07:20,270 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:07:20,270 \tHypothesis: Bhi ọsi ijiẹmhin , ọle da ha re obọ bhi ọne agbọn nan , ọle da ha re obọ bhi ọne agbọn nan .\n",
"2020-01-26 06:07:20,270 Example #3\n",
"2020-01-26 06:07:20,271 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:07:20,271 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:07:20,271 \tHypothesis: ( b ) Be bhọ mhan ha rẹ ha rẹ ha lu emhin nin mhan rẹ ha lu emhin .\n",
"2020-01-26 06:07:20,271 Validation result (greedy) at epoch 13, step 600: bleu: 1.40, loss: 86108.0625, ppl: 35.2704, duration: 46.8388s\n",
"2020-01-26 06:07:22,416 Epoch 13: total training loss 164.86\n",
"2020-01-26 06:07:22,416 EPOCH 14\n",
"2020-01-26 06:07:29,710 Epoch 14: total training loss 161.66\n",
"2020-01-26 06:07:29,711 EPOCH 15\n",
"2020-01-26 06:07:36,152 Epoch 15 Step: 700 Batch Loss: 3.295609 Tokens per Sec: 12699, Lr: 0.000300\n",
"2020-01-26 06:08:21,896 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:08:21,896 Saving new checkpoint.\n",
"2020-01-26 06:08:23,045 Example #0\n",
"2020-01-26 06:08:23,046 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:08:23,046 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:08:23,046 \tHypothesis: Ọle da wo ha yi mẹn bhi ọne agbọn nan .\n",
"2020-01-26 06:08:23,046 Example #1\n",
"2020-01-26 06:08:23,046 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:08:23,046 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:08:23,046 \tHypothesis: Bhi ọsi ẹmhọanta , ọle da ha re obọ , ọle da ha re obọ rẹkhan emhin nin ele rẹ ha re obọ .\n",
"2020-01-26 06:08:23,046 Example #2\n",
"2020-01-26 06:08:23,047 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:08:23,047 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:08:23,047 \tHypothesis: Bhi ọsi ẹmhọanta , mhan ki ha re obọ , ọle da ha re obọ rẹkhan adia nin ele rẹ ha re obọ , ọle da ha re izebhudu nin ele rẹ ha re obọ rẹkhan emhin nin ele .\n",
"2020-01-26 06:08:23,047 Example #3\n",
"2020-01-26 06:08:23,047 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:08:23,047 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:08:23,047 \tHypothesis: Be bhọ mhan ha rẹ ha re egbe khọkhọ Osẹnobulua .\n",
"2020-01-26 06:08:23,047 Validation result (greedy) at epoch 15, step 700: bleu: 1.91, loss: 83404.9141, ppl: 31.5379, duration: 46.8946s\n",
"2020-01-26 06:08:24,255 Epoch 15: total training loss 158.51\n",
"2020-01-26 06:08:24,255 EPOCH 16\n",
"2020-01-26 06:08:31,413 Epoch 16: total training loss 155.32\n",
"2020-01-26 06:08:31,413 EPOCH 17\n",
"2020-01-26 06:08:38,563 Epoch 17 Step: 800 Batch Loss: 3.353125 Tokens per Sec: 13172, Lr: 0.000300\n",
"2020-01-26 06:09:24,611 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:09:24,612 Saving new checkpoint.\n",
"2020-01-26 06:09:25,718 Example #0\n",
"2020-01-26 06:09:25,719 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:09:25,719 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:09:25,719 \tHypothesis: Bhi ọsi ẹmhọanta , mẹn da ha yi mẹn bhi ọne agbọn nan .\n",
"2020-01-26 06:09:25,719 Example #1\n",
"2020-01-26 06:09:25,719 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:09:25,719 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:09:25,719 \tHypothesis: Bhi ọsi ẹmhọanta , ọle da ha yi ikpe ne bunbun ne bunbun ne bunbun ne bunbun ne bunbun .\n",
"2020-01-26 06:09:25,720 Example #2\n",
"2020-01-26 06:09:25,720 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:09:25,720 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:09:25,720 \tHypothesis: ( 1 Cor . 1 : 1 ) Mhan da ha re izebhudu nin mhan rẹ ha re obọ rẹkhan adia nọnsi Jehova , ọle ki ha re izebhudu nin mhan rẹ ha re obọ rẹkhan adia nọnsi Jehova , bi ene biẹ ele da ha mhọn emhin ne bunbun .\n",
"2020-01-26 06:09:25,720 Example #3\n",
"2020-01-26 06:09:25,720 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:09:25,721 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:09:25,721 \tHypothesis: ( b ) Be bhọ mhan ha rẹ ha re egbe khọkhọ mhan , mhan ki sabọ ha re egbe khọkhọ mhan .\n",
"2020-01-26 06:09:25,721 Validation result (greedy) at epoch 17, step 800: bleu: 2.38, loss: 81618.1953, ppl: 29.2903, duration: 47.1577s\n",
"2020-01-26 06:09:25,910 Epoch 17: total training loss 152.99\n",
"2020-01-26 06:09:25,910 EPOCH 18\n",
"2020-01-26 06:09:33,208 Epoch 18: total training loss 150.52\n",
"2020-01-26 06:09:33,208 EPOCH 19\n",
"2020-01-26 06:09:40,890 Epoch 19: total training loss 148.12\n",
"2020-01-26 06:09:40,891 EPOCH 20\n",
"2020-01-26 06:09:41,688 Epoch 20 Step: 900 Batch Loss: 2.226691 Tokens per Sec: 11629, Lr: 0.000300\n",
"2020-01-26 06:10:27,566 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:10:27,566 Saving new checkpoint.\n",
"2020-01-26 06:10:28,669 Example #0\n",
"2020-01-26 06:10:28,670 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:10:28,670 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:10:28,670 \tHypothesis: Bhi ọsi ẹmhọanta , mẹn da wo ha yi mẹn mẹn .\n",
"2020-01-26 06:10:28,670 Example #1\n",
"2020-01-26 06:10:28,671 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:10:28,671 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:10:28,671 \tHypothesis: Bhi ọsi ẹmhọanta , ọle da ha yi ikpe ne bunbun ne bunbun ne bunbun ne bunbun ne bunbun .\n",
"2020-01-26 06:10:28,671 Example #2\n",
"2020-01-26 06:10:28,672 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:10:28,672 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:10:28,672 \tHypothesis: ( John 4 : 1 ) Mhan da ha yi emhin nọn ribhi Baibo , mhan ki ha re izebhudu nin mhan rẹ ha re izebhudu nin mhan rẹ ha lu iwẹnna itẹmhọn Osẹnobulua .\n",
"2020-01-26 06:10:28,672 Example #3\n",
"2020-01-26 06:10:28,673 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:10:28,673 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:10:28,673 \tHypothesis: Be bhọ mhan ha rẹ sabọ rẹkpa mhan rẹ ha lu emhin nin mhan rẹ ha lu emhin .\n",
"2020-01-26 06:10:28,673 Validation result (greedy) at epoch 20, step 900: bleu: 2.58, loss: 79700.1953, ppl: 27.0556, duration: 46.9852s\n",
"2020-01-26 06:10:35,284 Epoch 20: total training loss 145.45\n",
"2020-01-26 06:10:35,285 EPOCH 21\n",
"2020-01-26 06:10:42,872 Epoch 21: total training loss 143.53\n",
"2020-01-26 06:10:42,872 EPOCH 22\n",
"2020-01-26 06:10:44,565 Epoch 22 Step: 1000 Batch Loss: 3.257029 Tokens per Sec: 13712, Lr: 0.000300\n",
"2020-01-26 06:11:30,524 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:11:30,525 Saving new checkpoint.\n",
"2020-01-26 06:11:31,577 Example #0\n",
"2020-01-26 06:11:31,577 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:11:31,578 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:11:31,578 \tHypothesis: Ọle da wo ha yi mẹn bhi ọne okhuo .\n",
"2020-01-26 06:11:31,578 Example #1\n",
"2020-01-26 06:11:31,578 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:11:31,578 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:11:31,578 \tHypothesis: Bhi ọsi ẹmhọanta , ele da ha yi ikpe ne bunbun ne bunbun ne bunbun ne bunbun ne bunbun .\n",
"2020-01-26 06:11:31,578 Example #2\n",
"2020-01-26 06:11:31,579 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:11:31,579 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:11:31,579 \tHypothesis: Mhan ha re obọ rẹkhan adia nin mhan rẹ ha yi emhin ne ribhi Baibo , mhan ki ha yi emhin ne ribhi Baibo , mhan ki sabọ ha yi emhin ne ribhi Baibo , ranmhude emhin ne bunbun ne bunbun ne bunbun ne bunbun .\n",
"2020-01-26 06:11:31,579 Example #3\n",
"2020-01-26 06:11:31,579 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:11:31,579 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:11:31,579 \tHypothesis: Mhan ha sabọ rẹkpa mhan rẹ ha mhọn emhin bhi iẹnlẹn .\n",
"2020-01-26 06:11:31,579 Validation result (greedy) at epoch 22, step 1000: bleu: 2.65, loss: 78288.6562, ppl: 25.5206, duration: 47.0134s\n",
"2020-01-26 06:11:37,287 Epoch 22: total training loss 141.50\n",
"2020-01-26 06:11:37,287 EPOCH 23\n",
"2020-01-26 06:11:44,976 Epoch 23: total training loss 139.42\n",
"2020-01-26 06:11:44,977 EPOCH 24\n",
"2020-01-26 06:11:47,556 Epoch 24 Step: 1100 Batch Loss: 2.881152 Tokens per Sec: 13532, Lr: 0.000300\n",
"2020-01-26 06:12:33,313 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:12:33,313 Saving new checkpoint.\n",
"2020-01-26 06:12:34,530 Example #0\n",
"2020-01-26 06:12:34,531 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:12:34,532 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:12:34,532 \tHypothesis: Ọle da wo ha yi mẹn bhi ọne okhuo mẹn .\n",
"2020-01-26 06:12:34,532 Example #1\n",
"2020-01-26 06:12:34,532 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:12:34,532 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:12:34,532 \tHypothesis: Ọ da wo ha yi emhin nin ele rẹ ha yi emhin nin ele rẹ ha yi emhin nin ele ha mhọn da ele , ele da ha yi emhin nin ele rẹ ha yi emhin nin ele .\n",
"2020-01-26 06:12:34,532 Example #2\n",
"2020-01-26 06:12:34,533 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:12:34,533 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:12:34,533 \tHypothesis: Mhan ha re obọ rẹkhan adia nesi Jesu , mhan ki ha re izebhudu nin mhan , nin mhan rẹ ha re izebhudu nin ele , nin ele da sabọ ha re izebhudu nin ele , bi emhin nin ele rẹ ha re obọ rẹkhan adia nọnsi Osẹnobulua .\n",
"2020-01-26 06:12:34,533 Example #3\n",
"2020-01-26 06:12:34,533 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:12:34,533 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:12:34,533 \tHypothesis: Mhan ha sabọ rẹkpa mhan rẹ ha mhọn urẹọbhọ nọnsi Jehova .\n",
"2020-01-26 06:12:34,533 Validation result (greedy) at epoch 24, step 1100: bleu: 2.94, loss: 77336.5234, ppl: 24.5347, duration: 46.9770s\n",
"2020-01-26 06:12:39,420 Epoch 24: total training loss 137.79\n",
"2020-01-26 06:12:39,420 EPOCH 25\n",
"2020-01-26 06:12:46,852 Epoch 25: total training loss 135.86\n",
"2020-01-26 06:12:46,853 EPOCH 26\n",
"2020-01-26 06:12:50,379 Epoch 26 Step: 1200 Batch Loss: 2.626782 Tokens per Sec: 13105, Lr: 0.000300\n",
"2020-01-26 06:13:36,244 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:13:36,245 Saving new checkpoint.\n",
"2020-01-26 06:13:37,309 Example #0\n",
"2020-01-26 06:13:37,310 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:13:37,310 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:13:37,310 \tHypothesis: Mẹn da wo ha yi mẹn bhi enin .\n",
"2020-01-26 06:13:37,311 Example #1\n",
"2020-01-26 06:13:37,311 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:13:37,311 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:13:37,311 \tHypothesis: Ọle da ha re egbe khọkhọ ene biẹ ọmọn , ele da ha re egbe khọkhọ ele , ele da ha re egbe khọkhọ ele .\n",
"2020-01-26 06:13:37,312 Example #2\n",
"2020-01-26 06:13:37,312 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:13:37,312 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:13:37,312 \tHypothesis: Mhan ha re obọ rẹkhan adia nin ele , mhan ki ha re obọ rẹkhan adia nin ele , ele ki ha re egbe khọkhọ ọne agbọn nan , bi emhin nin ele rẹ ha re obọ rẹkhan ọlẹn .\n",
"2020-01-26 06:13:37,313 Example #3\n",
"2020-01-26 06:13:37,313 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:13:37,313 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:13:37,313 \tHypothesis: Be bhọ mhan ha rẹ sabọ rẹkpa mhan yẹ , mhan ki sabọ ha mhọn urẹọbhọ nọnsi Jehova .\n",
"2020-01-26 06:13:37,313 Validation result (greedy) at epoch 26, step 1200: bleu: 3.21, loss: 76556.4766, ppl: 23.7554, duration: 46.9339s\n",
"2020-01-26 06:13:41,182 Epoch 26: total training loss 134.28\n",
"2020-01-26 06:13:41,182 EPOCH 27\n",
"2020-01-26 06:13:48,485 Epoch 27: total training loss 131.93\n",
"2020-01-26 06:13:48,485 EPOCH 28\n",
"2020-01-26 06:13:52,991 Epoch 28 Step: 1300 Batch Loss: 2.923473 Tokens per Sec: 13603, Lr: 0.000300\n",
"2020-01-26 06:14:38,869 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:14:38,870 Saving new checkpoint.\n",
"2020-01-26 06:14:40,121 Example #0\n",
"2020-01-26 06:14:40,122 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:14:40,123 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:14:40,123 \tHypothesis: Mẹn da wo ha yi mẹn bhi obọ mẹn .\n",
"2020-01-26 06:14:40,123 Example #1\n",
"2020-01-26 06:14:40,123 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:14:40,123 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:14:40,123 \tHypothesis: Ọle da ha yi ọkpa bhi ọne otọ nan , ọle da ha yi ọria nọn ha yi ọria nọn ha yi emhin nin ele ha lu .\n",
"2020-01-26 06:14:40,124 Example #2\n",
"2020-01-26 06:14:40,124 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:14:40,124 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:14:40,124 \tHypothesis: Mhan dẹ sabọ ha re obọ rẹkhan adia nesi Jehova , mhan ki ha re obọ rẹkhan adia nesi Jehova , la sade mhan re obọ rẹkhan adia nesi Jehova , la sade mhan re obọ rẹkhan adia nesi Jehova .\n",
"2020-01-26 06:14:40,124 Example #3\n",
"2020-01-26 06:14:40,124 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:14:40,125 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:14:40,125 \tHypothesis: Mhan dẹ sabọ ha re egbe khọkhọ iJehova .\n",
"2020-01-26 06:14:40,125 Validation result (greedy) at epoch 28, step 1300: bleu: 3.73, loss: 75516.3906, ppl: 22.7547, duration: 47.1329s\n",
"2020-01-26 06:14:42,975 Epoch 28: total training loss 130.09\n",
"2020-01-26 06:14:42,975 EPOCH 29\n",
"2020-01-26 06:14:50,506 Epoch 29: total training loss 132.18\n",
"2020-01-26 06:14:50,507 EPOCH 30\n",
"2020-01-26 06:14:55,892 Epoch 30 Step: 1400 Batch Loss: 2.957211 Tokens per Sec: 13033, Lr: 0.000300\n",
"2020-01-26 06:15:41,685 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:15:41,686 Saving new checkpoint.\n",
"2020-01-26 06:15:43,226 Example #0\n",
"2020-01-26 06:15:43,226 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:15:43,226 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:15:43,227 \tHypothesis: Mẹn da wo ha yi mẹn bhi enin .\n",
"2020-01-26 06:15:43,227 Example #1\n",
"2020-01-26 06:15:43,227 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:15:43,227 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:15:43,227 \tHypothesis: ( Prov . 6 : 1 ) Bhiriọ , ele da ha re izebhudu nin ele rẹ ha re izebhudu nin ele .\n",
"2020-01-26 06:15:43,227 Example #2\n",
"2020-01-26 06:15:43,228 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:15:43,228 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:15:43,228 \tHypothesis: Mhan ha miẹn elele bhi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn bi ene biẹ ọmọn .\n",
"2020-01-26 06:15:43,228 Example #3\n",
"2020-01-26 06:15:43,228 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:15:43,228 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:15:43,228 \tHypothesis: Mhan ha miẹn emhin bhi egbe .\n",
"2020-01-26 06:15:43,228 Validation result (greedy) at epoch 30, step 1400: bleu: 3.51, loss: 74975.6016, ppl: 22.2512, duration: 47.3361s\n",
"2020-01-26 06:15:45,306 Epoch 30: total training loss 126.63\n",
"2020-01-26 06:15:45,306 EPOCH 31\n",
"2020-01-26 06:15:52,868 Epoch 31: total training loss 125.45\n",
"2020-01-26 06:15:52,869 EPOCH 32\n",
"2020-01-26 06:15:58,897 Epoch 32 Step: 1500 Batch Loss: 2.731450 Tokens per Sec: 13521, Lr: 0.000300\n",
"2020-01-26 06:16:45,044 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:16:45,044 Saving new checkpoint.\n",
"2020-01-26 06:16:46,048 Example #0\n",
"2020-01-26 06:16:46,048 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:16:46,048 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:16:46,048 \tHypothesis: Mẹn da wo ha yi mẹn bhi obọ mẹn .\n",
"2020-01-26 06:16:46,048 Example #1\n",
"2020-01-26 06:16:46,049 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:16:46,049 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:16:46,049 \tHypothesis: Bhi ọsi ẹmhọanta , ẹbho ne bunbun ne bunbun ne bunbun dọ ha mhọn ẹmhọn Osẹnobulua .\n",
"2020-01-26 06:16:46,049 Example #2\n",
"2020-01-26 06:16:46,049 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:16:46,049 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:16:46,049 \tHypothesis: Mhan ha re obọ rẹkhan adia nesi Jehova , mhan ki ha re obọ rẹkhan adia nesi Jehova , ranmhude mhan mhọn isẹhoa nin ele rẹ ha mhọn bhi ọne iwẹnna nan .\n",
"2020-01-26 06:16:46,049 Example #3\n",
"2020-01-26 06:16:46,050 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:16:46,050 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:16:46,050 \tHypothesis: Mhan ha miẹn elele bhi egbe .\n",
"2020-01-26 06:16:46,050 Validation result (greedy) at epoch 32, step 1500: bleu: 3.62, loss: 74599.6406, ppl: 21.9077, duration: 47.1525s\n",
"2020-01-26 06:16:47,239 Epoch 32: total training loss 123.27\n",
"2020-01-26 06:16:47,240 EPOCH 33\n",
"2020-01-26 06:16:54,372 Epoch 33: total training loss 121.43\n",
"2020-01-26 06:16:54,373 EPOCH 34\n",
"2020-01-26 06:17:01,662 Epoch 34 Step: 1600 Batch Loss: 2.268804 Tokens per Sec: 12931, Lr: 0.000300\n",
"2020-01-26 06:17:47,829 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:17:47,829 Saving new checkpoint.\n",
"2020-01-26 06:17:48,951 Example #0\n",
"2020-01-26 06:17:48,952 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:17:48,952 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:17:48,953 \tHypothesis: Mẹn da ha yi mẹn bhi okhuo mẹn .\n",
"2020-01-26 06:17:48,953 Example #1\n",
"2020-01-26 06:17:48,953 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:17:48,954 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:17:48,954 \tHypothesis: Ọne ẹghe nan , ọle da ha re izebhudu nan , ele da ha re izebhudu nin ele .\n",
"2020-01-26 06:17:48,954 Example #2\n",
"2020-01-26 06:17:48,955 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:17:48,955 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:17:48,955 \tHypothesis: Mhan da ha re obọ rẹkhan uhi bi ene ewanlẹn bhi agbotu , mhan ki ha mhọn isẹhoa nin ele rẹ ha mhọn bhi agbaẹbho , bi ene ẹbho ne bunbun da ha mhọn isẹhoa nin ele rẹ ha mhọn ọne iwẹnna nan .\n",
"2020-01-26 06:17:48,955 Example #3\n",
"2020-01-26 06:17:48,956 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:17:48,956 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:17:48,957 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn isẹhoa ọsaje .\n",
"2020-01-26 06:17:48,957 Validation result (greedy) at epoch 34, step 1600: bleu: 3.95, loss: 74023.3047, ppl: 21.3914, duration: 47.2945s\n",
"2020-01-26 06:17:49,171 Epoch 34: total training loss 119.27\n",
"2020-01-26 06:17:49,172 EPOCH 35\n",
"2020-01-26 06:17:56,662 Epoch 35: total training loss 118.11\n",
"2020-01-26 06:17:56,663 EPOCH 36\n",
"2020-01-26 06:18:03,945 Epoch 36: total training loss 119.21\n",
"2020-01-26 06:18:03,945 EPOCH 37\n",
"2020-01-26 06:18:04,611 Epoch 37 Step: 1700 Batch Loss: 2.369793 Tokens per Sec: 14355, Lr: 0.000300\n",
"2020-01-26 06:18:50,528 Example #0\n",
"2020-01-26 06:18:50,529 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:18:50,529 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:18:50,529 \tHypothesis: Mẹn da ha yi mẹn bhi Esali Jehova .\n",
"2020-01-26 06:18:50,530 Example #1\n",
"2020-01-26 06:18:50,530 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:18:50,530 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:18:50,530 \tHypothesis: Ọle da ha re obọ rẹkhan adia nesi Jehova , ele ki ha re obọ rẹkhan adia nesi Jehova .\n",
"2020-01-26 06:18:50,531 Example #2\n",
"2020-01-26 06:18:50,531 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:18:50,531 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:18:50,531 \tHypothesis: Mhan ha re obọ rẹkhan uwedẹ nin ele rẹ ha mhọn ọne isẹhoa nan rẹ ha ribhi ọne agbọn nan , bi ene biẹ ọmọn ki ha mhọn isẹhoa nin ele rẹ ha mhọn ọne isẹhoa nan .\n",
"2020-01-26 06:18:50,531 Example #3\n",
"2020-01-26 06:18:50,532 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:18:50,532 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:18:50,532 \tHypothesis: Mhan ha sabọ rẹkpa mhan rẹ sabọ ha mhọn urẹọbhọ bọsi eria .\n",
"2020-01-26 06:18:50,532 Validation result (greedy) at epoch 37, step 1700: bleu: 3.81, loss: 74392.2812, ppl: 21.7205, duration: 45.9213s\n",
"2020-01-26 06:18:57,037 Epoch 37: total training loss 115.12\n",
"2020-01-26 06:18:57,037 EPOCH 38\n",
"2020-01-26 06:19:04,241 Epoch 38: total training loss 112.91\n",
"2020-01-26 06:19:04,241 EPOCH 39\n",
"2020-01-26 06:19:05,798 Epoch 39 Step: 1800 Batch Loss: 2.360721 Tokens per Sec: 13783, Lr: 0.000300\n",
"2020-01-26 06:19:51,795 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:19:51,796 Saving new checkpoint.\n",
"2020-01-26 06:19:52,972 Example #0\n",
"2020-01-26 06:19:52,972 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:19:52,972 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:19:52,972 \tHypothesis: Mẹn da wo ha yi mẹn bhi agbotu .\n",
"2020-01-26 06:19:52,973 Example #1\n",
"2020-01-26 06:19:52,973 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:19:52,973 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:19:52,973 \tHypothesis: Ene ẹbho ne bunbun wo manman ha mhọn urẹọbhọ da ẹbho ne bunbun .\n",
"2020-01-26 06:19:52,973 Example #2\n",
"2020-01-26 06:19:52,973 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:19:52,974 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:19:52,974 \tHypothesis: Mhan da ha re ọne isẹhoa nan rẹ ha mhọn isẹhoa nin ele rẹ ha ribhi ọne agbọn nan , bi ene ga iJehova , bi ene biẹ ọmọn bi ene ga iJehova .\n",
"2020-01-26 06:19:52,974 Example #3\n",
"2020-01-26 06:19:52,974 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:19:52,974 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:19:52,974 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ sabọ ha mhọn urẹọbhọ bọsi eria .\n",
"2020-01-26 06:19:52,974 Validation result (greedy) at epoch 39, step 1800: bleu: 4.18, loss: 73928.2891, ppl: 21.3075, duration: 47.1763s\n",
"2020-01-26 06:19:58,715 Epoch 39: total training loss 111.43\n",
"2020-01-26 06:19:58,716 EPOCH 40\n",
"2020-01-26 06:20:06,311 Epoch 40: total training loss 109.70\n",
"2020-01-26 06:20:06,312 EPOCH 41\n",
"2020-01-26 06:20:08,691 Epoch 41 Step: 1900 Batch Loss: 2.476414 Tokens per Sec: 13159, Lr: 0.000300\n",
"2020-01-26 06:20:54,570 Hooray! New best validation result [ppl]!\n",
"2020-01-26 06:20:54,570 Saving new checkpoint.\n",
"2020-01-26 06:20:55,659 Example #0\n",
"2020-01-26 06:20:55,659 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:20:55,659 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:20:55,660 \tHypothesis: Mẹn da ha khian ọne isikulu , mẹn da dọ ha khian ọne isikulu .\n",
"2020-01-26 06:20:55,660 Example #1\n",
"2020-01-26 06:20:55,660 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:20:55,660 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:20:55,660 \tHypothesis: Ene ẹbho nan wo manman hoẹmhọn egbe ele , ele ki ha mhọn ọne isẹhoa nan rẹ ha ga iJehova .\n",
"2020-01-26 06:20:55,660 Example #2\n",
"2020-01-26 06:20:55,660 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:20:55,661 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:20:55,661 \tHypothesis: Bhi ọsi ẹmhọanta , mhan dẹ sabọ re izebhudu nin ene ga iJehova , sade mhan re obọ kpa bhi agbaẹbho kẹkẹ , la sade mhan re obọ rẹkhan ọlẹn bhi agbaẹbho ọbhebhe , la sade a re obọ kpa bhi ọne agbọn nan .\n",
"2020-01-26 06:20:55,661 Example #3\n",
"2020-01-26 06:20:55,661 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:20:55,661 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:20:55,661 \tHypothesis: Mhan dẹ sabọ rẹkpa ene biẹ mhan rẹ ha mhọn urẹọbhọ da iJehova .\n",
"2020-01-26 06:20:55,661 Validation result (greedy) at epoch 41, step 1900: bleu: 4.38, loss: 73768.7266, ppl: 21.1673, duration: 46.9699s\n",
"2020-01-26 06:21:00,460 Epoch 41: total training loss 108.00\n",
"2020-01-26 06:21:00,460 EPOCH 42\n",
"2020-01-26 06:21:07,846 Epoch 42: total training loss 106.55\n",
"2020-01-26 06:21:07,846 EPOCH 43\n",
"2020-01-26 06:21:11,280 Epoch 43 Step: 2000 Batch Loss: 2.588126 Tokens per Sec: 13353, Lr: 0.000300\n",
"2020-01-26 06:21:57,059 Example #0\n",
"2020-01-26 06:21:57,060 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:21:57,060 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:21:57,060 \tHypothesis: Mẹn da ha yi mẹn bhi agbotu .\n",
"2020-01-26 06:21:57,060 Example #1\n",
"2020-01-26 06:21:57,061 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:21:57,061 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:21:57,061 \tHypothesis: Ene ẹbho nan wo manman hoẹmhọn egbe ele .\n",
"2020-01-26 06:21:57,061 Example #2\n",
"2020-01-26 06:21:57,062 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:21:57,062 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:21:57,062 \tHypothesis: Mhan da ha re obọ rẹkhan uhi bi ene ribhi agbotu nọnsẹmhan , mhan ki ha mhọn isẹhoa nin ele rẹ ha zẹ ebi ele ha lu yẹ , bi emhin ne bunbun ne bunbun ne bunbun ne bunbun .\n",
"2020-01-26 06:21:57,062 Example #3\n",
"2020-01-26 06:21:57,062 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:21:57,063 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:21:57,063 \tHypothesis: Mhan dẹ sabọ rẹkpa ene biẹ mhan rẹ sabọ mun oga mhọn nọnsẹn .\n",
"2020-01-26 06:21:57,063 Validation result (greedy) at epoch 43, step 2000: bleu: 4.61, loss: 73770.9844, ppl: 21.1693, duration: 45.7826s\n",
"2020-01-26 06:22:00,972 Epoch 43: total training loss 106.94\n",
"2020-01-26 06:22:00,972 EPOCH 44\n",
"2020-01-26 06:22:08,112 Epoch 44: total training loss 104.02\n",
"2020-01-26 06:22:08,112 EPOCH 45\n",
"2020-01-26 06:22:12,281 Epoch 45 Step: 2100 Batch Loss: 2.218198 Tokens per Sec: 13917, Lr: 0.000300\n",
"2020-01-26 06:22:58,089 Example #0\n",
"2020-01-26 06:22:58,090 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:22:58,090 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:22:58,091 \tHypothesis: Mẹn da ha yi mẹn bhi agbotu .\n",
"2020-01-26 06:22:58,091 Example #1\n",
"2020-01-26 06:22:58,091 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:22:58,092 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:22:58,092 \tHypothesis: Ene ẹbho ne bunbun wo manman hoẹmhọn egbe ele .\n",
"2020-01-26 06:22:58,092 Example #2\n",
"2020-01-26 06:22:58,093 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:22:58,093 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:22:58,093 \tHypothesis: Bhi ọsi ẹmhọanta , mhan ki sabọ ha mhọn isẹhoa nin ele rẹ ha mhọn bhi ọne agbọn nan , bi emhin ne bunbun , bi emhin ne bunbun ne bunbun ne bunbun .\n",
"2020-01-26 06:22:58,093 Example #3\n",
"2020-01-26 06:22:58,094 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:22:58,094 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:22:58,094 \tHypothesis: Mhan dẹ sabọ rẹkpa ene eria nan rẹ sabọ rẹkpa ele .\n",
"2020-01-26 06:22:58,094 Validation result (greedy) at epoch 45, step 2100: bleu: 4.43, loss: 73995.4219, ppl: 21.3668, duration: 45.8125s\n",
"2020-01-26 06:23:01,107 Epoch 45: total training loss 101.78\n",
"2020-01-26 06:23:01,107 EPOCH 46\n",
"2020-01-26 06:23:08,284 Epoch 46: total training loss 100.12\n",
"2020-01-26 06:23:08,285 EPOCH 47\n",
"2020-01-26 06:23:13,242 Epoch 47 Step: 2200 Batch Loss: 2.125690 Tokens per Sec: 13449, Lr: 0.000300\n",
"2020-01-26 06:23:59,097 Example #0\n",
"2020-01-26 06:23:59,098 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:23:59,098 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:23:59,098 \tHypothesis: Mẹn da ha yi mẹn bhi isikulu .\n",
"2020-01-26 06:23:59,098 Example #1\n",
"2020-01-26 06:23:59,099 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:23:59,099 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:23:59,099 \tHypothesis: Ene ẹbho nan wo manman hoẹmhọn egbe ele .\n",
"2020-01-26 06:23:59,099 Example #2\n",
"2020-01-26 06:23:59,100 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:23:59,100 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:23:59,100 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da ha mhọn isẹhoa ọsaje , bi emhin ne bunbun ne bunbun ne bunbun , la mhan ha mhọn ọne agbọn nan , bi emhin ne bunbun .\n",
"2020-01-26 06:23:59,100 Example #3\n",
"2020-01-26 06:23:59,100 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:23:59,100 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:23:59,101 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ sabọ ha mhọn urẹọbhọ bọsi eria .\n",
"2020-01-26 06:23:59,101 Validation result (greedy) at epoch 47, step 2200: bleu: 4.77, loss: 74653.0703, ppl: 21.9562, duration: 45.8578s\n",
"2020-01-26 06:24:01,261 Epoch 47: total training loss 98.90\n",
"2020-01-26 06:24:01,262 EPOCH 48\n",
"2020-01-26 06:24:08,514 Epoch 48: total training loss 97.66\n",
"2020-01-26 06:24:08,514 EPOCH 49\n",
"2020-01-26 06:24:14,456 Epoch 49 Step: 2300 Batch Loss: 2.433468 Tokens per Sec: 13251, Lr: 0.000300\n",
"2020-01-26 06:25:00,375 Example #0\n",
"2020-01-26 06:25:00,376 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:25:00,376 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:25:00,376 \tHypothesis: Mẹn da ha khian uwa ọsi mẹn .\n",
"2020-01-26 06:25:00,376 Example #1\n",
"2020-01-26 06:25:00,377 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:25:00,377 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:25:00,377 \tHypothesis: Ene ẹbho ne bunbun wo lẹn ghe , ele guanọ nin ele ha ga Osẹnobulua , ele ki ha re iẹnlẹn nọnsele man ẹbho .\n",
"2020-01-26 06:25:00,377 Example #2\n",
"2020-01-26 06:25:00,378 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:25:00,378 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:25:00,378 \tHypothesis: Bhi ọsi ẹmhọanta , mhan ki sabọ ha mhọn isẹhoa nin ele rẹ ha zẹ ebi a rẹ mun oga mhọn nọnsẹn yẹ , nin ẹbho ne bunbun da sabọ ha mhọn isẹhoa nin ele rẹ ha mhọn ọne ẹmhọn , bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu bi ozughu nan .\n",
"2020-01-26 06:25:00,378 Example #3\n",
"2020-01-26 06:25:00,378 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:25:00,379 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:25:00,379 \tHypothesis: Mhan dẹ sabọ rẹkpa mhan rẹ ha mhọn urẹọbhọ bọsi eria ne mhọn nọnsẹn .\n",
"2020-01-26 06:25:00,379 Validation result (greedy) at epoch 49, step 2300: bleu: 5.01, loss: 74774.7734, ppl: 22.0671, duration: 45.9223s\n",
"2020-01-26 06:25:01,675 Epoch 49: total training loss 98.46\n",
"2020-01-26 06:25:01,675 EPOCH 50\n",
"2020-01-26 06:25:08,910 Epoch 50: total training loss 94.65\n",
"2020-01-26 06:25:08,910 EPOCH 51\n",
"2020-01-26 06:25:15,597 Epoch 51 Step: 2400 Batch Loss: 1.754878 Tokens per Sec: 13267, Lr: 0.000300\n",
"2020-01-26 06:26:01,261 Example #0\n",
"2020-01-26 06:26:01,261 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:26:01,262 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:26:01,262 \tHypothesis: Mẹn da ha khian uwa ọsi mẹn .\n",
"2020-01-26 06:26:01,262 Example #1\n",
"2020-01-26 06:26:01,262 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:26:01,262 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:26:01,262 \tHypothesis: Ene ẹbho nan wo manman hoẹmhọn egbe ele .\n",
"2020-01-26 06:26:01,262 Example #2\n",
"2020-01-26 06:26:01,262 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:26:01,262 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:26:01,263 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da ha mhọn isẹhoa ọsaje nin ọle rẹ ha zẹ ebi ọle ha lu , bi emhin ne bunbun yẹ , mhan ki yẹ ha noo ọne agbọn nan rebhe .\n",
"2020-01-26 06:26:01,263 Example #3\n",
"2020-01-26 06:26:01,263 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:26:01,263 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:26:01,263 \tHypothesis: Mhan dẹ sabọ rẹkpa ene ibhio mhan nan rẹ sabọ rẹkpa mhan rẹ ha mhọn emhanmhan .\n",
"2020-01-26 06:26:01,263 Validation result (greedy) at epoch 51, step 2400: bleu: 5.39, loss: 75081.5938, ppl: 22.3490, duration: 45.6658s\n",
"2020-01-26 06:26:01,846 Epoch 51: total training loss 95.07\n",
"2020-01-26 06:26:01,846 EPOCH 52\n",
"2020-01-26 06:26:08,992 Epoch 52: total training loss 91.61\n",
"2020-01-26 06:26:08,993 EPOCH 53\n",
"2020-01-26 06:26:16,198 Epoch 53: total training loss 90.01\n",
"2020-01-26 06:26:16,199 EPOCH 54\n",
"2020-01-26 06:26:16,496 Epoch 54 Step: 2500 Batch Loss: 2.151499 Tokens per Sec: 14123, Lr: 0.000300\n",
"2020-01-26 06:27:02,181 Example #0\n",
"2020-01-26 06:27:02,182 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:27:02,182 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:27:02,182 \tHypothesis: Mẹn da ha yi mẹn bhi isikulu , mẹn da dọ ha yo isikulu .\n",
"2020-01-26 06:27:02,183 Example #1\n",
"2020-01-26 06:27:02,183 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:27:02,183 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:27:02,183 \tHypothesis: Ene ẹbho nan wo manman hoẹmhọn egbe ele , ele ọkpa ele ọkpa ele re eghọnghọn lu emhin nin ele lu .\n",
"2020-01-26 06:27:02,184 Example #2\n",
"2020-01-26 06:27:02,184 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:27:02,184 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:27:02,184 \tHypothesis: Bhi ọsi ẹmhọanta , mhan sabọ rẹ ha mhọn isẹhoa nin ele rẹ zẹ ebi mhan ha lu , bi emhin ne bunbun nin ele ha da sabọ ha mhọn isẹhoa nin ele rẹ ha zẹ emhin bhi obọ .\n",
"2020-01-26 06:27:02,184 Example #3\n",
"2020-01-26 06:27:02,185 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:27:02,185 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:27:02,185 \tHypothesis: Mhan dẹ sabọ rẹkpa ene ibhio mhan nan rẹ sabọ rẹkpa mhan .\n",
"2020-01-26 06:27:02,185 Validation result (greedy) at epoch 54, step 2500: bleu: 5.43, loss: 75066.7734, ppl: 22.3353, duration: 45.6891s\n",
"2020-01-26 06:27:09,116 Epoch 54: total training loss 89.34\n",
"2020-01-26 06:27:09,116 EPOCH 55\n",
"2020-01-26 06:27:16,457 Epoch 55: total training loss 87.67\n",
"2020-01-26 06:27:16,458 EPOCH 56\n",
"2020-01-26 06:27:17,456 Epoch 56 Step: 2600 Batch Loss: 2.244434 Tokens per Sec: 13313, Lr: 0.000210\n",
"2020-01-26 06:28:03,417 Example #0\n",
"2020-01-26 06:28:03,418 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:28:03,419 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:28:03,419 \tHypothesis: Mẹn da ha yi mẹn bhi isikulu .\n",
"2020-01-26 06:28:03,419 Example #1\n",
"2020-01-26 06:28:03,420 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:28:03,420 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:28:03,420 \tHypothesis: Ene ẹbho nan wo manman hoẹmhọn egbe ele , ele ọkpa ele ọkpa ele mun kalo gbera emhin nin ele lu .\n",
"2020-01-26 06:28:03,420 Example #2\n",
"2020-01-26 06:28:03,421 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:28:03,421 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:28:03,421 \tHypothesis: Bhi ọsi ẹmhọanta , mhan da sabọ ha mhọn isẹhoa ọsaje nin ọria rẹ ha zẹ ebi ọne ẹmhọn nan rẹ lu emhin yẹ , bi emhin ne bunbun wo ti ọne agbọn nan .\n",
"2020-01-26 06:28:03,421 Example #3\n",
"2020-01-26 06:28:03,422 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:28:03,422 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:28:03,422 \tHypothesis: Emhin kpataki nọn nin mhan ha rẹ sabọ rẹkpa mhan rẹ sabọ ha mhọn okugbe .\n",
"2020-01-26 06:28:03,423 Validation result (greedy) at epoch 56, step 2600: bleu: 5.76, loss: 75907.1953, ppl: 23.1257, duration: 45.9662s\n",
"2020-01-26 06:28:09,646 Epoch 56: total training loss 85.80\n",
"2020-01-26 06:28:09,647 EPOCH 57\n",
"2020-01-26 06:28:16,958 Epoch 57: total training loss 83.85\n",
"2020-01-26 06:28:16,958 EPOCH 58\n",
"2020-01-26 06:28:18,835 Epoch 58 Step: 2700 Batch Loss: 1.853516 Tokens per Sec: 13053, Lr: 0.000210\n",
"2020-01-26 06:29:04,798 Example #0\n",
"2020-01-26 06:29:04,799 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:29:04,799 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:29:04,800 \tHypothesis: Mẹn da ha yi mẹn bhi agbaẹbho natiọle Multin mẹn yo isikulu .\n",
"2020-01-26 06:29:04,800 Example #1\n",
"2020-01-26 06:29:04,800 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:29:04,800 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:29:04,800 \tHypothesis: Ene ẹbho nan wo hoẹmhọn egbe ele , ele ọkpa ele ọkpa ele mun kalo gbera ẹbho .\n",
"2020-01-26 06:29:04,801 Example #2\n",
"2020-01-26 06:29:04,801 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:29:04,801 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:29:04,801 \tHypothesis: Bhi ọsi ẹmhọanta , mhan ki ha mhọn isẹhoa ọsaje , nin ele rẹ ha zẹ emhin bhi obọ , la ebe nesẹmhan , la ọria soso iribhọ nọn kokhun nẹ bhi ọne agbọn nan rebhe .\n",
"2020-01-26 06:29:04,801 Example #3\n",
"2020-01-26 06:29:04,802 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:29:04,802 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:29:04,802 \tHypothesis: Mhan dẹ sabọ rẹkpa ene ibhio mhan nan rẹ sabọ rẹkpa mhan rẹ ha mhọn ọfure .\n",
"2020-01-26 06:29:04,802 Validation result (greedy) at epoch 58, step 2700: bleu: 5.95, loss: 75744.6484, ppl: 22.9707, duration: 45.9668s\n",
"2020-01-26 06:29:10,306 Epoch 58: total training loss 83.99\n",
"2020-01-26 06:29:10,307 EPOCH 59\n",
"2020-01-26 06:29:17,548 Epoch 59: total training loss 82.05\n",
"2020-01-26 06:29:17,548 EPOCH 60\n",
"2020-01-26 06:29:20,148 Epoch 60 Step: 2800 Batch Loss: 1.447856 Tokens per Sec: 13417, Lr: 0.000210\n",
"2020-01-26 06:30:06,063 Example #0\n",
"2020-01-26 06:30:06,064 \tSource: I WAS raised in Graz , Austria .\n",
"2020-01-26 06:30:06,064 \tReference: AGBAẸBHO natiọle Graz bhi Austria , ọle mẹn da wanre .\n",
"2020-01-26 06:30:06,064 \tHypothesis: Mẹn da ha yi mẹn bhi ọne isikulu .\n",
"2020-01-26 06:30:06,064 Example #1\n",
"2020-01-26 06:30:06,065 \tSource: In contrast with the people who show the widespread lack of love today , those who worship Jehovah have genuine love for their fellow man .\n",
"2020-01-26 06:30:06,065 \tReference: Ene ga iJehova ẹlẹnan wo mhọn oyẹẹ da ibo ele , ele bha diabe ene iga Jehova ne bha hoẹmhọn ibo ele .\n",
"2020-01-26 06:30:06,065 \tHypothesis: Ene ẹbho nan wo hoẹmhọn egbe ele , ele ọkpa ele ọkpa ele mun kalo bhi iẹnlẹn .\n",
"2020-01-26 06:30:06,065 Example #2\n",
"2020-01-26 06:30:06,066 \tSource: Today , we live as foreigners , as it were , in a world that has been morally and spiritually corrupted by Babylon the Great , the world empire of false religion , “ a dwelling place of demons . ”\n",
"2020-01-26 06:30:06,066 \tReference: Inian mhan diabi eriọbhe bhi ẹkẹ ọne agbọn nan nin oga ohoghe ria a . Babylon nọn khua a tie ene oga ohoghe nan , ele da dọ kiẹn eji ẹlinmhin ne imhẹn da nyẹnlẹn . ( Rev .\n",
"2020-01-26 06:30:06,066 \tHypothesis: Bhi ọsi ẹmhọanta , mhan ki ha mhọn isẹhoa nin ele rẹ ha zẹ ebi ele ha lu , bi emhin ne bunbun wo ti ele bhọ rẹ ha mhọn ọne isẹhoa nan , bi ozughu bi ozughu bi ozughu nan mun obọ .\n",
"2020-01-26 06:30:06,066 Example #3\n",
"2020-01-26 06:30:06,067 \tSource: We should also strive to help others spiritually .\n",
"2020-01-26 06:30:06,067 \tReference: Ahamiẹn mhan re ẹghe bhi otọ rẹ ha luẹ iBaibo , yẹ deba ene gene guanọ nin ele ga iJehova ha muobọ , ọ dẹ rẹkpa mhan rẹ ziẹn ikolu nin mhan bi Jehova koko mhọnlẹn .\n",
"2020-01-26 06:30:06,067 \tHypothesis: Emhin kpataki nọn nin mhan rẹ rẹkpa ẹbho rẹ sabọ ha zọn egbe .\n",
"2020-01-26 06:30:06,067 Validation result (greedy) at epoch 60, step 2800: bleu: 6.42, loss: 76520.3438, ppl: 23.7199, duration: 45.9189s\n",
"2020-01-26 06:30:10,740 Epoch 60: total training loss 81.03\n",
"2020-01-26 06:30:10,741 EPOCH 61\n",
"2020-01-26 06:30:18,022 Epoch 61: total training loss 80.01\n",
"2020-01-26 06:30:18,022 EPOCH 62\n",
"2020-01-26 06:30:21,552 Epoch 62 Step: 2900 Batch Loss: 1.625466 Tokens per Sec: 13614, Lr: 0.000210\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "n94wlrCjVc17",
"outputId": "e977d469-999d-4d30-9f59-72932ba14755",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 663
}
},
"source": [
"# Output our validation accuracy epoch 1-30\n",
"! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"Steps: 100\tLoss: 116888.22656\tPPL: 126.05112\tbleu: 0.00000\tLR: 0.00030000\t*\n",
"Steps: 200\tLoss: 112468.19531\tPPL: 104.98232\tbleu: 0.00000\tLR: 0.00030000\t*\n",
"Steps: 300\tLoss: 101796.18750\tPPL: 67.50474\tbleu: 0.00000\tLR: 0.00030000\t*\n",
"Steps: 400\tLoss: 95543.67188\tPPL: 52.11624\tbleu: 0.29204\tLR: 0.00030000\t*\n",
"Steps: 500\tLoss: 90320.13281\tPPL: 41.98586\tbleu: 0.96838\tLR: 0.00030000\t*\n",
"Steps: 600\tLoss: 86108.06250\tPPL: 35.27036\tbleu: 1.39655\tLR: 0.00030000\t*\n",
"Steps: 700\tLoss: 83404.91406\tPPL: 31.53791\tbleu: 1.91092\tLR: 0.00030000\t*\n",
"Steps: 800\tLoss: 81618.19531\tPPL: 29.29035\tbleu: 2.37779\tLR: 0.00030000\t*\n",
"Steps: 900\tLoss: 79700.19531\tPPL: 27.05559\tbleu: 2.58315\tLR: 0.00030000\t*\n",
"Steps: 1000\tLoss: 78288.65625\tPPL: 25.52059\tbleu: 2.64520\tLR: 0.00030000\t*\n",
"Steps: 1100\tLoss: 77336.52344\tPPL: 24.53468\tbleu: 2.94157\tLR: 0.00030000\t*\n",
"Steps: 1200\tLoss: 76556.47656\tPPL: 23.75541\tbleu: 3.20514\tLR: 0.00030000\t*\n",
"Steps: 1300\tLoss: 75516.39062\tPPL: 22.75473\tbleu: 3.73430\tLR: 0.00030000\t*\n",
"Steps: 1400\tLoss: 74975.60156\tPPL: 22.25119\tbleu: 3.50584\tLR: 0.00030000\t*\n",
"Steps: 1500\tLoss: 74599.64062\tPPL: 21.90772\tbleu: 3.62337\tLR: 0.00030000\t*\n",
"Steps: 1600\tLoss: 74023.30469\tPPL: 21.39144\tbleu: 3.94679\tLR: 0.00030000\t*\n",
"Steps: 1700\tLoss: 74392.28125\tPPL: 21.72055\tbleu: 3.80602\tLR: 0.00030000\t\n",
"Steps: 1800\tLoss: 73928.28906\tPPL: 21.30751\tbleu: 4.18474\tLR: 0.00030000\t*\n",
"Steps: 1900\tLoss: 73768.72656\tPPL: 21.16728\tbleu: 4.38409\tLR: 0.00030000\t*\n",
"Steps: 2000\tLoss: 73770.98438\tPPL: 21.16926\tbleu: 4.61327\tLR: 0.00030000\t\n",
"Steps: 2100\tLoss: 73995.42188\tPPL: 21.36678\tbleu: 4.42531\tLR: 0.00030000\t\n",
"Steps: 2200\tLoss: 74653.07031\tPPL: 21.95621\tbleu: 4.76705\tLR: 0.00030000\t\n",
"Steps: 2300\tLoss: 74774.77344\tPPL: 22.06705\tbleu: 5.00587\tLR: 0.00030000\t\n",
"Steps: 2400\tLoss: 75081.59375\tPPL: 22.34900\tbleu: 5.38832\tLR: 0.00030000\t\n",
"Steps: 2500\tLoss: 75066.77344\tPPL: 22.33530\tbleu: 5.42747\tLR: 0.00021000\t\n",
"Steps: 2600\tLoss: 75907.19531\tPPL: 23.12569\tbleu: 5.75667\tLR: 0.00021000\t\n",
"Steps: 2700\tLoss: 75744.64844\tPPL: 22.97066\tbleu: 5.95162\tLR: 0.00021000\t\n",
"Steps: 2800\tLoss: 76520.34375\tPPL: 23.71992\tbleu: 6.42372\tLR: 0.00021000\t\n",
"Steps: 2900\tLoss: 76849.28125\tPPL: 24.04498\tbleu: 6.23793\tLR: 0.00021000\t\n",
"Steps: 3000\tLoss: 77257.02344\tPPL: 24.45410\tbleu: 6.59527\tLR: 0.00021000\t\n",
"Steps: 3100\tLoss: 77712.66406\tPPL: 24.91953\tbleu: 6.60808\tLR: 0.00014700\t\n",
"Steps: 3200\tLoss: 77657.35156\tPPL: 24.86256\tbleu: 6.72748\tLR: 0.00014700\t\n",
"Steps: 3300\tLoss: 78290.96875\tPPL: 25.52304\tbleu: 6.96522\tLR: 0.00014700\t\n",
"Steps: 3400\tLoss: 78602.87500\tPPL: 25.85458\tbleu: 6.77731\tLR: 0.00014700\t\n",
"Steps: 3500\tLoss: 79068.42969\tPPL: 26.35748\tbleu: 7.13205\tLR: 0.00014700\t\n",
"Steps: 3600\tLoss: 79626.85156\tPPL: 26.97360\tbleu: 6.78547\tLR: 0.00014700\t\n",
"Steps: 3700\tLoss: 79842.32031\tPPL: 27.21517\tbleu: 6.87354\tLR: 0.00010290\t\n",
"Steps: 3800\tLoss: 80084.18750\tPPL: 27.48891\tbleu: 6.91555\tLR: 0.00010290\t\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab_type": "code",
"id": "66WhRE9lIhoD",
"outputId": "ab884d35-2e53-4a65-ce90-01f07c73d4c4",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 68
}
},
"source": [
"# Test our model\n",
"! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\""
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"2020-01-26 07:41:48,000 Hello! This is Joey-NMT.\n",
"2020-01-26 07:42:22,635 dev bleu: 4.94 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
"2020-01-26 07:42:27,157 test bleu: 6.25 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
],
"name": "stdout"
}
]
}
]
} |