File size: 200,401 Bytes
78aa4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "Copy of efi_en_starter_notebook.ipynb",
      "provenance": [],
      "collapsed_sections": [],
      "toc_visible": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.5.6"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Igc5itf-xMGj"
      },
      "source": [
        "# Masakhane - Machine Translation for African Languages (Using JoeyNMT)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "x4fXCKCf36IK"
      },
      "source": [
        "## Note before beginning:\n",
        "### - The idea is that you should be able to make minimal changes to this in order to get SOME result for your own translation corpus. \n",
        "\n",
        "### - The tl;dr: Go to the **\"TODO\"** comments which will tell you what to update to get up and running\n",
        "\n",
        "### - If you actually want to have a clue what you're doing, read the text and peek at the links\n",
        "\n",
        "### - With 100 epochs, it should take around 7 hours to run in Google Colab\n",
        "\n",
        "### - Once you've gotten a result for your language, please attach and email your notebook that generated it to masakhanetranslation@gmail.com\n",
        "\n",
        "### - If you care enough and get a chance, doing a brief background on your language would be amazing. See examples in  [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "l929HimrxS0a"
      },
      "source": [
        "## Retrieve your data & make a parallel corpus\n",
        "\n",
        "If you are wanting to use the JW300 data referenced on the Masakhane website or in our GitHub repo, you can use `opus-tools` to convert the data into a convenient format. `opus_read` from that package provides a convenient tool for reading the native aligned XML files and to convert them to TMX format. The tool can also be used to fetch relevant files from OPUS on the fly and to filter the data as necessary. [Read the documentation](https://pypi.org/project/opustools-pkg/) for more details.\n",
        "\n",
        "Once you have your corpus files in TMX format (an xml structure which will include the sentences in your target language and your source language in a single file), we recommend reading them into a pandas dataframe. Thankfully, Jade wrote a silly `tmx2dataframe` package which converts your tmx file to a pandas dataframe. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "oGRmDELn7Az0",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 122
        },
        "outputId": "61acdb19-5c3b-4937-beb9-2f5f6ebed4c1"
      },
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/drive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "Cn3tgQLzUxwn",
        "colab": {}
      },
      "source": [
        "# TODO: Set your source and target languages. Keep in mind, these traditionally use language codes as found here:\n",
        "# These will also become the suffix's of all vocab and corpus files used throughout\n",
        "import os\n",
        "source_language = \"en\"\n",
        "target_language = \"nya\" \n",
        "lc = False  # If True, lowercase the data.\n",
        "seed = 42  # Random seed for shuffling.\n",
        "tag = \"baseline\" # Give a unique name to your folder - this is to ensure you don't rewrite any models you've already submitted\n",
        "\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "os.environ[\"tag\"] = tag\n",
        "\n",
        "# This will save it to a folder in our gdrive instead! \n",
        "!mkdir -p \"/content/drive/My Drive/masakhane/$src-$tgt-$tag\"\n",
        "g_drive_path = \"/content/drive/My Drive/masakhane/%s-%s-%s\" % (source_language, target_language, tag)\n",
        "os.environ[\"gdrive_path\"] = g_drive_path\n",
        "models_path = '%s/models/%s%s_transformer'% (g_drive_path, source_language, target_language)\n",
        "# model temporary directory for training\n",
        "model_temp_dir = \"/content/drive/My Drive/masakhane/model-temp\"\n",
        "# model permanent storage on the drive\n",
        "!mkdir -p \"$gdrive_path/models/${src}${tgt}_transformer/\""
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "kBSgJHEw7Nvx",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "61688e5e-5c17-4baa-8854-958ae4f04c71"
      },
      "source": [
        "!echo $gdrive_path"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/content/drive/My Drive/masakhane/en-nya-baseline\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "gA75Fs9ys8Y9",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 102
        },
        "outputId": "925edfb6-3c75-4601-ae6c-b38e1c50941e"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Install opus-tools\n",
        "! pip install opustools-pkg "
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting opustools-pkg\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/6c/9f/e829a0cceccc603450cd18e1ff80807b6237a88d9a8df2c0bb320796e900/opustools_pkg-0.0.52-py3-none-any.whl (80kB)\n",
            "\r\u001b[K     |████                            | 10kB 29.9MB/s eta 0:00:01\r\u001b[K     |████████                        | 20kB 6.3MB/s eta 0:00:01\r\u001b[K     |████████████▏                   | 30kB 7.6MB/s eta 0:00:01\r\u001b[K     |████████████████▏               | 40kB 8.1MB/s eta 0:00:01\r\u001b[K     |████████████████████▎           | 51kB 7.3MB/s eta 0:00:01\r\u001b[K     |████████████████████████▎       | 61kB 8.3MB/s eta 0:00:01\r\u001b[K     |████████████████████████████▎   | 71kB 8.5MB/s eta 0:00:01\r\u001b[K     |████████████████████████████████| 81kB 5.6MB/s \n",
            "\u001b[?25hInstalling collected packages: opustools-pkg\n",
            "Successfully installed opustools-pkg-0.0.52\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "xq-tDZVks7ZD",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 204
        },
        "outputId": "5dbe00c9-1177-44c9-9fbb-fc282c40a960"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Downloading our corpus\n",
        "! opus_read -d JW300 -s $src -t $tgt -wm moses -w jw300.$src jw300.$tgt -q\n",
        "\n",
        "# extract the corpus file\n",
        "! gunzip JW300_latest_xml_$src-$tgt.xml.gz"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "\n",
            "Alignment file /proj/nlpl/data/OPUS/JW300/latest/xml/en-nya.xml.gz not found. The following files are available for downloading:\n",
            "\n",
            "        ./JW300_latest_xml_en.zip already exists\n",
            "        ./JW300_latest_xml_nya.zip already exists\n",
            " 572 KB https://object.pouta.csc.fi/OPUS-JW300/v1/xml/en-nya.xml.gz\n",
            "\n",
            " 572 KB Total size\n",
            "./JW300_latest_xml_en-nya.xml.gz ... 100% of 572 KB\n",
            "gzip: JW300_latest_xml_en-nya.xml already exists; do you wish to overwrite (y or n)? n\n",
            "\tnot overwritten\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "j2K6QK2NOaUX",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "f10dd54e-7fb9-44a7-8c36-38e2a1db1555"
      },
      "source": [
        "# extract the corpus file\n",
        "! gunzip JW300_latest_xml_$tgt-$src.xml.gz"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "gzip: JW300_latest_xml_nya-en.xml.gz: No such file or directory\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "n48GDRnP8y2G",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 578
        },
        "outputId": "32880d12-76cb-446d-8b95-112a5877508c"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Download the global test set.\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
        "  \n",
        "# And the specific test set for this language pair.\n",
        "os.environ[\"trg\"] = target_language \n",
        "os.environ[\"src\"] = source_language \n",
        "\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.en \n",
        "! mv test.en-$trg.en test.en\n",
        "! wget https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-$trg.$trg \n",
        "! mv test.en-$trg.$trg test.$trg"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "--2020-07-12 20:08:28--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-any.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 277791 (271K) [text/plain]\n",
            "Saving to: ‘test.en-any.en.1’\n",
            "\n",
            "\rtest.en-any.en.1      0%[                    ]       0  --.-KB/s               \rtest.en-any.en.1    100%[===================>] 271.28K  --.-KB/s    in 0.02s   \n",
            "\n",
            "2020-07-12 20:08:28 (11.8 MB/s) - ‘test.en-any.en.1’ saved [277791/277791]\n",
            "\n",
            "--2020-07-12 20:08:30--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-nya.en\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 203330 (199K) [text/plain]\n",
            "Saving to: ‘test.en-nya.en’\n",
            "\n",
            "test.en-nya.en      100%[===================>] 198.56K  --.-KB/s    in 0.01s   \n",
            "\n",
            "2020-07-12 20:08:30 (13.0 MB/s) - ‘test.en-nya.en’ saved [203330/203330]\n",
            "\n",
            "--2020-07-12 20:08:32--  https://raw.githubusercontent.com/juliakreutzer/masakhane/master/jw300_utils/test/test.en-nya.nya\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.0.133, 151.101.64.133, 151.101.128.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.0.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 226404 (221K) [text/plain]\n",
            "Saving to: ‘test.en-nya.nya’\n",
            "\n",
            "test.en-nya.nya     100%[===================>] 221.10K  --.-KB/s    in 0.02s   \n",
            "\n",
            "2020-07-12 20:08:33 (11.1 MB/s) - ‘test.en-nya.nya’ saved [226404/226404]\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "NqDG-CI28y2L",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "5265c307-2d30-4133-efb9-e968d324db2d"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Read the test data to filter from train and dev splits.\n",
        "# Store english portion in set for quick filtering checks.\n",
        "en_test_sents = set()\n",
        "filter_test_sents = \"test.en-any.en\"\n",
        "j = 0\n",
        "with open(filter_test_sents) as f:\n",
        "  for line in f:\n",
        "    en_test_sents.add(line.strip())\n",
        "    j += 1\n",
        "print('Loaded {} global test sentences to filter from the training/dev data.'.format(j))"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded 3571 global test sentences to filter from the training/dev data.\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "3CNdwLBCfSIl",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 376
        },
        "outputId": "4df3192b-b6be-43a8-af23-21e65a3e3b10"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "import pandas as pd\n",
        "\n",
        "# TMX file to dataframe\n",
        "source_file = 'jw300.' + source_language\n",
        "target_file = 'jw300.' + target_language\n",
        "\n",
        "source = []\n",
        "target = []\n",
        "skip_lines = []  # Collect the line numbers of the source portion to skip the same lines for the target portion.\n",
        "with open(source_file) as f:\n",
        "    for i, line in enumerate(f):\n",
        "        # Skip sentences that are contained in the test set.\n",
        "        if line.strip() not in en_test_sents:\n",
        "            source.append(line.strip())\n",
        "        else:\n",
        "            skip_lines.append(i)             \n",
        "with open(target_file) as f:\n",
        "    for j, line in enumerate(f):\n",
        "        # Only add to corpus if corresponding source was not skipped.\n",
        "        if j not in skip_lines:\n",
        "            target.append(line.strip())\n",
        "    \n",
        "print('Loaded data and skipped {}/{} lines since contained in test set.'.format(len(skip_lines), i))\n",
        "    \n",
        "df = pd.DataFrame(zip(source, target), columns=['source_sentence', 'target_sentence'])\n",
        "# if you get TypeError: data argument can't be an iterator is because of your zip version run this below\n",
        "#df = pd.DataFrame(list(zip(source, target)), columns=['source_sentence', 'target_sentence'])\n",
        "df.head(10)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Loaded data and skipped 4429/60566 lines since contained in test set.\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source_sentence</th>\n",
              "      <th>target_sentence</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>This publication is not for sale .</td>\n",
              "      <td>Magazini ino si yogulitsa .</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td></td>\n",
              "      <td>Colinga cake ni kuthandiza pa nchito yophunzit...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>3 Finding the Way</td>\n",
              "      <td>3 Mmene Mungaipezele</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>4 Contentment and Generosity</td>\n",
              "      <td>4 Kukhutila Komanso Kupatsa</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>6 Physical Health and Resilience</td>\n",
              "      <td>6 Thanzi Labwino na Kupilila</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>8 Love</td>\n",
              "      <td>8 Cikondi</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>6</th>\n",
              "      <td>10 Forgiveness</td>\n",
              "      <td>10 Kukhululuka</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>7</th>\n",
              "      <td>12 Purpose in Life</td>\n",
              "      <td>12 Colinga ca Moyo</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>8</th>\n",
              "      <td>14 Hope</td>\n",
              "      <td>14 Ciyembekezo</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>9</th>\n",
              "      <td>16 Learn More</td>\n",
              "      <td>16 Dziŵani Zambili</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>"
            ],
            "text/plain": [
              "                      source_sentence                                    target_sentence\n",
              "0  This publication is not for sale .                        Magazini ino si yogulitsa .\n",
              "1                                      Colinga cake ni kuthandiza pa nchito yophunzit...\n",
              "2                   3 Finding the Way                               3 Mmene Mungaipezele\n",
              "3        4 Contentment and Generosity                        4 Kukhutila Komanso Kupatsa\n",
              "4    6 Physical Health and Resilience                       6 Thanzi Labwino na Kupilila\n",
              "5                              8 Love                                          8 Cikondi\n",
              "6                      10 Forgiveness                                     10 Kukhululuka\n",
              "7                  12 Purpose in Life                                 12 Colinga ca Moyo\n",
              "8                             14 Hope                                     14 Ciyembekezo\n",
              "9                       16 Learn More                                 16 Dziŵani Zambili"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 17
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "YkuK3B4p2AkN"
      },
      "source": [
        "## Pre-processing and export\n",
        "\n",
        "It is generally a good idea to remove duplicate translations and conflicting translations from the corpus. In practice, these public corpora include some number of these that need to be cleaned.\n",
        "\n",
        "In addition we will split our data into dev/test/train and export to the filesystem."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "M_2ouEOH1_1q",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 187
        },
        "outputId": "2d141bdf-56a8-4f62-d44e-4fc4371f7064"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# drop duplicate translations\n",
        "df_pp = df.drop_duplicates()\n",
        "\n",
        "# drop conflicting translations\n",
        "# (this is optional and something that you might want to comment out \n",
        "# depending on the size of your corpus)\n",
        "df_pp.drop_duplicates(subset='source_sentence', inplace=True)\n",
        "df_pp.drop_duplicates(subset='target_sentence', inplace=True)\n",
        "\n",
        "# Shuffle the data to remove bias in dev set selection.\n",
        "df_pp = df_pp.sample(frac=1, random_state=seed).reset_index(drop=True)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:8: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  \n",
            "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:9: SettingWithCopyWarning: \n",
            "A value is trying to be set on a copy of a slice from a DataFrame\n",
            "\n",
            "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
            "  if __name__ == '__main__':\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Z_1BwAApEtMk",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "d7ad4abd-1d0e-4591-c155-0879765269a7"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# Install fuzzy wuzzy to remove \"almost duplicate\" sentences in the\n",
        "# test and training sets.\n",
        "! pip install fuzzywuzzy\n",
        "! pip install python-Levenshtein\n",
        "import time\n",
        "from fuzzywuzzy import process\n",
        "import numpy as np\n",
        "\n",
        "# reset the index of the training set after previous filtering\n",
        "df_pp.reset_index(drop=False, inplace=True)\n",
        "\n",
        "# Remove samples from the training data set if they \"almost overlap\" with the\n",
        "# samples in the test set.\n",
        "\n",
        "# Filtering function. Adjust pad to narrow down the candidate matches to\n",
        "# within a certain length of characters of the given sample.\n",
        "def fuzzfilter(sample, candidates, pad):\n",
        "  candidates = [x for x in candidates if len(x) <= len(sample)+pad and len(x) >= len(sample)-pad] \n",
        "  if len(candidates) > 0:\n",
        "    return process.extractOne(sample, candidates)[1]\n",
        "  else:\n",
        "    return np.nan\n",
        "\n",
        "# NOTE - This might run slow depending on the size of your training set. We are\n",
        "# printing some information to help you track how long it would take. \n",
        "scores = []\n",
        "start_time = time.time()\n",
        "for idx, row in df_pp.iterrows():\n",
        "  scores.append(fuzzfilter(row['source_sentence'], list(en_test_sents), 5))\n",
        "  if idx % 1000 == 0:\n",
        "    hours, rem = divmod(time.time() - start_time, 3600)\n",
        "    minutes, seconds = divmod(rem, 60)\n",
        "    print(\"{:0>2}:{:0>2}:{:05.2f}\".format(int(hours),int(minutes),seconds), \"%0.2f percent complete\" % (100.0*float(idx)/float(len(df_pp))))\n",
        "\n",
        "# Filter out \"almost overlapping samples\"\n",
        "df_pp['scores'] = scores\n",
        "df_pp = df_pp[df_pp['scores'] < 95]"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Collecting fuzzywuzzy\n",
            "  Downloading https://files.pythonhosted.org/packages/43/ff/74f23998ad2f93b945c0309f825be92e04e0348e062026998b5eefef4c33/fuzzywuzzy-0.18.0-py2.py3-none-any.whl\n",
            "Installing collected packages: fuzzywuzzy\n",
            "Successfully installed fuzzywuzzy-0.18.0\n",
            "Collecting python-Levenshtein\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/42/a9/d1785c85ebf9b7dfacd08938dd028209c34a0ea3b1bcdb895208bd40a67d/python-Levenshtein-0.12.0.tar.gz (48kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 4.1MB/s \n",
            "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from python-Levenshtein) (47.3.1)\n",
            "Building wheels for collected packages: python-Levenshtein\n",
            "  Building wheel for python-Levenshtein (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for python-Levenshtein: filename=python_Levenshtein-0.12.0-cp36-cp36m-linux_x86_64.whl size=144805 sha256=e7a3cd1d3b3a56457aa3239d36cb86516c41ead306b3503e9238370e3113acb6\n",
            "  Stored in directory: /root/.cache/pip/wheels/de/c2/93/660fd5f7559049268ad2dc6d81c4e39e9e36518766eaf7e342\n",
            "Successfully built python-Levenshtein\n",
            "Installing collected packages: python-Levenshtein\n",
            "Successfully installed python-Levenshtein-0.12.0\n",
            "00:00:00.02 0.00 percent complete\n",
            "00:00:19.79 1.96 percent complete\n",
            "00:00:39.92 3.92 percent complete\n",
            "00:00:59.16 5.88 percent complete\n",
            "00:01:18.63 7.84 percent complete\n",
            "00:01:38.33 9.79 percent complete\n",
            "00:01:57.66 11.75 percent complete\n",
            "00:02:17.39 13.71 percent complete\n",
            "00:02:36.66 15.67 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '*']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:02:56.46 17.63 percent complete\n",
            "00:03:16.09 19.59 percent complete\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "WARNING:root:Applied processor reduces input query to empty string, all comparisons will have score 0. [Query: '']\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "00:03:35.71 21.55 percent complete\n",
            "00:03:54.99 23.51 percent complete\n",
            "00:04:14.15 25.47 percent complete\n",
            "00:04:33.53 27.42 percent complete\n",
            "00:04:52.75 29.38 percent complete\n",
            "00:05:11.77 31.34 percent complete\n",
            "00:05:30.92 33.30 percent complete\n",
            "00:05:50.44 35.26 percent complete\n",
            "00:06:09.47 37.22 percent complete\n",
            "00:06:29.46 39.18 percent complete\n",
            "00:06:48.79 41.14 percent complete\n",
            "00:07:08.00 43.10 percent complete\n",
            "00:07:27.52 45.05 percent complete\n",
            "00:07:46.96 47.01 percent complete\n",
            "00:08:06.48 48.97 percent complete\n",
            "00:08:26.28 50.93 percent complete\n",
            "00:08:45.30 52.89 percent complete\n",
            "00:09:04.50 54.85 percent complete\n",
            "00:09:23.50 56.81 percent complete\n",
            "00:09:42.81 58.77 percent complete\n",
            "00:10:02.45 60.73 percent complete\n",
            "00:10:21.29 62.68 percent complete\n",
            "00:10:40.70 64.64 percent complete\n",
            "00:10:59.94 66.60 percent complete\n",
            "00:11:19.03 68.56 percent complete\n",
            "00:11:38.52 70.52 percent complete\n",
            "00:11:57.42 72.48 percent complete\n",
            "00:12:16.58 74.44 percent complete\n",
            "00:12:35.66 76.40 percent complete\n",
            "00:12:55.66 78.36 percent complete\n",
            "00:13:14.89 80.31 percent complete\n",
            "00:13:34.63 82.27 percent complete\n",
            "00:13:53.54 84.23 percent complete\n",
            "00:14:12.79 86.19 percent complete\n",
            "00:14:31.36 88.15 percent complete\n",
            "00:14:50.79 90.11 percent complete\n",
            "00:15:10.14 92.07 percent complete\n",
            "00:15:29.67 94.03 percent complete\n",
            "00:15:49.44 95.99 percent complete\n",
            "00:16:09.30 97.95 percent complete\n",
            "00:16:28.20 99.90 percent complete\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "hxxBOCA-xXhy",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 799
        },
        "outputId": "2fdcb050-df32-4e1e-884f-ae110a3085b7"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# This section does the split between train/dev for the parallel corpora then saves them as separate files\n",
        "# We use 1000 dev test and the given test set.\n",
        "import csv\n",
        "\n",
        "# Do the split between dev/train and create parallel corpora\n",
        "num_dev_patterns = 1000\n",
        "\n",
        "# Optional: lower case the corpora - this will make it easier to generalize, but without proper casing.\n",
        "if lc:  # Julia: making lowercasing optional\n",
        "    df_pp[\"source_sentence\"] = df_pp[\"source_sentence\"].str.lower()\n",
        "    df_pp[\"target_sentence\"] = df_pp[\"target_sentence\"].str.lower()\n",
        "\n",
        "# Julia: test sets are already generated\n",
        "dev = df_pp.tail(num_dev_patterns) # Herman: Error in original\n",
        "stripped = df_pp.drop(df_pp.tail(num_dev_patterns).index)\n",
        "\n",
        "with open(\"train.\"+source_language, \"w\") as src_file, open(\"train.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in stripped.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "    \n",
        "with open(\"dev.\"+source_language, \"w\") as src_file, open(\"dev.\"+target_language, \"w\") as trg_file:\n",
        "  for index, row in dev.iterrows():\n",
        "    src_file.write(row[\"source_sentence\"]+\"\\n\")\n",
        "    trg_file.write(row[\"target_sentence\"]+\"\\n\")\n",
        "\n",
        "#stripped[[\"source_sentence\"]].to_csv(\"train.\"+source_language, header=False, index=False)  # Herman: Added `header=False` everywhere\n",
        "#stripped[[\"target_sentence\"]].to_csv(\"train.\"+target_language, header=False, index=False)  # Julia: Problematic handling of quotation marks.\n",
        "\n",
        "#dev[[\"source_sentence\"]].to_csv(\"dev.\"+source_language, header=False, index=False)\n",
        "#dev[[\"target_sentence\"]].to_csv(\"dev.\"+target_language, header=False, index=False)\n",
        "\n",
        "# Doublecheck the format below. There should be no extra quotation marks or weird characters.\n",
        "! head train.*\n",
        "! head dev.*"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "==> train.en <==\n",
            "How Job came to know Jehovah .\n",
            "Imagine Jacob gently wiping the tears from Joseph’s eyes , comforting him with the same hope that had once comforted Jacob’s grandfather Abraham .\n",
            "What gathering work is referred to at Matthew 24 : 31 ?\n",
            "( b ) Why is that ancient event significant for us ?\n",
            "Consider what is involved in making that amazing feat possible .\n",
            "Neither are we required to adopt a special posture .\n",
            "Or what if you lose your job , and you are having difficulty finding another ?\n",
            "The Bible explains : “ By the trespass of the one man [ Adam ] death ruled as king ” over Adam’s descendants .\n",
            "The next article will address this concern .\n",
            "However , more is involved than simply telling your children what is right and what is wrong .\n",
            "\n",
            "==> train.nya <==\n",
            "Mmene Yobu anadziŵila Yehova .\n",
            "Yelekezani kuti mukuona Yakobo atate ake a Yosefe akumupukuta misozi mokoma mtima , kenako akumutonthoza pomulimbikitsa kukhala ndi ciyembekezo cimene cinatonthoza agogo ake a Abulahamu .\n",
            "Ndi nchito yosonkhanitsa iti imene ikuchulidwa pa Mateyu 24 : 31 ?\n",
            "( b ) N’cifukwa ciani cocitika cakale cimeneci ndi nkhani yaikulu kwa ife ?\n",
            "Onani nchito imene imakhalapo kuti Baibulo lizipezeka m’zinenelo zambili .\n",
            "Safunanso kuti popemphela tizitsatila kakhalidwe ka thupi kapadela .\n",
            "Nanga bwanji ngati nchito imene munali kugwila inatha ndipo simukupezanso ina ?\n",
            "Baibulo imati : “ Cifukwa ca ucimo wa munthu mmodziyo [ Adamu ] imfa inalamulila monga mfumu ” kwa mbadwa za Adamu .\n",
            "Nkhani yotsatila idzafotokoza mmene tingacitile zimenezi .\n",
            "Komabe , kuuza ana anu kuti ici n’cabwino ici n’coipa , pakokha si kokwanila .\n",
            "==> dev.en <==\n",
            "Our professional ballet careers took us around the world to dance\n",
            "He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "Spread the Good News of Undeserved Kindness , July\n",
            "Now , do you think that it bothers Satan that he and his invisible cohorts have been relegated to the world of folklore ?\n",
            "To some people , it is nothing less than divine approval of revenge .\n",
            "You could add , “ Actually , that passage says much more . ”\n",
            "When we first arrived in Pine Bluff , we moved in with the brother who was the congregation servant at the time .\n",
            "Without their loving support , I could never have served where the need is greater . ” Simon\n",
            "But , instead , my employer thanked me for my good work .\n",
            "\n",
            "==> dev.nya <==\n",
            "Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "Koma kodi muganiza kuti Satana ndi ziwanda zake amakhumudwa ndi zimene anthu amanena zoti iwo ndi ongopeka ?\n",
            "( Ekisodo 21 : 24 ) Anthu ena amakhulupilila kuti mau amenewo akuonetsa kuti Mulungu amavomeleza kubwezela .\n",
            "Mwina mungakambenso kuti , “ Lembali lili ndi zambili . ”\n",
            "Pamene tinafika ku Pine Bluff , tinayamba kukhala ku nyumba kwa m’bale amene anali mtumiki wa mpingo pa nthawiyo .\n",
            "Popanda thandizo lao la cikondi , sindikanakwanitsa kutumikila kumalo osoŵa . ”\n",
            "Koma iwo ananiyamikila cifukwa cogwila bwino nchito .\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "epeCydmCyS8X"
      },
      "source": [
        "\n",
        "\n",
        "---\n",
        "\n",
        "\n",
        "## Installation of JoeyNMT\n",
        "\n",
        "JoeyNMT is a simple, minimalist NMT package which is useful for learning and teaching. Check out the documentation for JoeyNMT [here](https://joeynmt.readthedocs.io)  "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "iBRMm4kMxZ8L",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "4c788f60-64f6-4c7e-a012-51ec529fac42"
      },
      "source": [
        "# Install JoeyNMT\n",
        "! git clone https://github.com/joeynmt/joeynmt.git\n",
        "! cd joeynmt; pip3 install ."
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Cloning into 'joeynmt'...\n",
            "remote: Enumerating objects: 2467, done.\u001b[K\n",
            "remote: Total 2467 (delta 0), reused 0 (delta 0), pack-reused 2467\u001b[K\n",
            "Receiving objects: 100% (2467/2467), 2.64 MiB | 4.34 MiB/s, done.\n",
            "Resolving deltas: 100% (1725/1725), done.\n",
            "Processing /content/joeynmt\n",
            "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.16.0)\n",
            "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (7.0.0)\n",
            "Requirement already satisfied: numpy<2.0,>=1.14.5 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.18.5)\n",
            "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (47.3.1)\n",
            "Requirement already satisfied: torch>=1.1 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.5.1+cu101)\n",
            "Requirement already satisfied: tensorflow>=1.14 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (2.2.0)\n",
            "Requirement already satisfied: torchtext in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.3.1)\n",
            "Collecting sacrebleu>=1.3.6\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/66/5b/cf661da8e9b0229f5d98c2961b072a5728fd11a0758957f8c0fd36081c06/sacrebleu-1.4.12-py3-none-any.whl (54kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 4.5MB/s \n",
            "\u001b[?25hCollecting subword-nmt\n",
            "  Downloading https://files.pythonhosted.org/packages/74/60/6600a7bc09e7ab38bc53a48a20d8cae49b837f93f5842a41fe513a694912/subword_nmt-0.3.7-py2.py3-none-any.whl\n",
            "Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (3.2.2)\n",
            "Requirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (0.10.1)\n",
            "Collecting pyyaml>=5.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/64/c2/b80047c7ac2478f9501676c988a5411ed5572f35d1beff9cae07d321512c/PyYAML-5.3.1.tar.gz (269kB)\n",
            "\u001b[K     |████████████████████████████████| 276kB 9.7MB/s \n",
            "\u001b[?25hCollecting pylint\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e8/fb/734960c55474c8f74e6ad4c8588fc44073fb9d69e223269d26a3c2435d16/pylint-2.5.3-py3-none-any.whl (324kB)\n",
            "\u001b[K     |████████████████████████████████| 327kB 19.6MB/s \n",
            "\u001b[?25hRequirement already satisfied: six==1.12 in /usr/local/lib/python3.6/dist-packages (from joeynmt==0.0.1) (1.12.0)\n",
            "Collecting wrapt==1.11.1\n",
            "  Downloading https://files.pythonhosted.org/packages/67/b2/0f71ca90b0ade7fad27e3d20327c996c6252a2ffe88f50a95bba7434eda9/wrapt-1.11.1.tar.gz\n",
            "Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.10.0)\n",
            "Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.30.0)\n",
            "Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.2.0)\n",
            "Requirement already satisfied: scipy==1.4.1; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.4.1)\n",
            "Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.9.0)\n",
            "Requirement already satisfied: keras-preprocessing>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.2)\n",
            "Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (3.2.1)\n",
            "Requirement already satisfied: tensorflow-estimator<2.3.0,>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.0)\n",
            "Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.1.0)\n",
            "Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.34.2)\n",
            "Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (1.6.3)\n",
            "Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (0.3.3)\n",
            "Requirement already satisfied: tensorboard<2.3.0,>=2.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.2.2)\n",
            "Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow>=1.14->joeynmt==0.0.1) (2.10.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (2.23.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from torchtext->joeynmt==0.0.1) (4.41.1)\n",
            "Collecting mecab-python3==0.996.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/18/49/b55a839a77189042960bf96490640c44816073f917d489acbc5d79fa5cc3/mecab_python3-0.996.5-cp36-cp36m-manylinux2010_x86_64.whl (17.1MB)\n",
            "\u001b[K     |████████████████████████████████| 17.1MB 205kB/s \n",
            "\u001b[?25hCollecting portalocker\n",
            "  Downloading https://files.pythonhosted.org/packages/53/84/7b3146ec6378d28abc73ab484f09f47dfa008ad6f03f33d90a369f880e25/portalocker-1.7.0-py2.py3-none-any.whl\n",
            "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (1.2.0)\n",
            "Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.8.1)\n",
            "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (2.4.7)\n",
            "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->joeynmt==0.0.1) (0.10.0)\n",
            "Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.6/dist-packages (from seaborn->joeynmt==0.0.1) (1.0.5)\n",
            "Collecting astroid<=2.5,>=2.4.0\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/24/a8/5133f51967fb21e46ee50831c3f5dda49e976b7f915408d670b1603d41d6/astroid-2.4.2-py3-none-any.whl (213kB)\n",
            "\u001b[K     |████████████████████████████████| 215kB 57.1MB/s \n",
            "\u001b[?25hCollecting toml>=0.7.1\n",
            "  Downloading https://files.pythonhosted.org/packages/9f/e1/1b40b80f2e1663a6b9f497123c11d7d988c0919abbf3c3f2688e448c5363/toml-0.10.1-py2.py3-none-any.whl\n",
            "Collecting isort<5,>=4.2.5\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/e5/b0/c121fd1fa3419ea9bfd55c7f9c4fedfec5143208d8c7ad3ce3db6c623c21/isort-4.3.21-py2.py3-none-any.whl (42kB)\n",
            "\u001b[K     |████████████████████████████████| 51kB 8.6MB/s \n",
            "\u001b[?25hCollecting mccabe<0.7,>=0.6\n",
            "  Downloading https://files.pythonhosted.org/packages/87/89/479dc97e18549e21354893e4ee4ef36db1d237534982482c3681ee6e7b57/mccabe-0.6.1-py2.py3-none-any.whl\n",
            "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.17.2)\n",
            "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.0.1)\n",
            "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.2.2)\n",
            "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.6.0.post3)\n",
            "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.1)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (1.24.3)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2.9)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (3.0.4)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->torchtext->joeynmt==0.0.1) (2020.6.20)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas>=0.22.0->seaborn->joeynmt==0.0.1) (2018.9)\n",
            "Collecting lazy-object-proxy==1.4.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/0b/dd/b1e3407e9e6913cf178e506cd0dee818e58694d9a5cd1984e3f6a8b9a10f/lazy_object_proxy-1.4.3-cp36-cp36m-manylinux1_x86_64.whl (55kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 10.3MB/s \n",
            "\u001b[?25hCollecting typed-ast<1.5,>=1.4.0; implementation_name == \"cpython\" and python_version < \"3.8\"\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/90/ed/5459080d95eb87a02fe860d447197be63b6e2b5e9ff73c2b0a85622994f4/typed_ast-1.4.1-cp36-cp36m-manylinux1_x86_64.whl (737kB)\n",
            "\u001b[K     |████████████████████████████████| 747kB 57.5MB/s \n",
            "\u001b[?25hRequirement already satisfied: rsa<5,>=3.1.4; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (4.6)\n",
            "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.2.8)\n",
            "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (4.1.0)\n",
            "Requirement already satisfied: importlib-metadata; python_version < \"3.8\" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.6.1)\n",
            "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (1.3.0)\n",
            "Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.6/dist-packages (from rsa<5,>=3.1.4; python_version >= \"3\"->google-auth<2,>=1.6.3->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (0.4.8)\n",
            "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < \"3.8\"->markdown>=2.6.8->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.3.0,>=2.2.0->tensorflow>=1.14->joeynmt==0.0.1) (3.1.0)\n",
            "Building wheels for collected packages: joeynmt, pyyaml, wrapt\n",
            "  Building wheel for joeynmt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for joeynmt: filename=joeynmt-0.0.1-cp36-none-any.whl size=77293 sha256=3c8fae0f346f99b8904b109c79858a5b46d70c5f4a22b0f98cafbd4f266a220e\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-tty7q62f/wheels/db/01/db/751cc9f3e7f6faec127c43644ba250a3ea7ad200594aeda70a\n",
            "  Building wheel for pyyaml (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for pyyaml: filename=PyYAML-5.3.1-cp36-cp36m-linux_x86_64.whl size=44621 sha256=dbad71b916be69235a8fee7be2bbb6b3bd66580496180dc64d349a9d2a140ca7\n",
            "  Stored in directory: /root/.cache/pip/wheels/a7/c1/ea/cf5bd31012e735dc1dfea3131a2d5eae7978b251083d6247bd\n",
            "  Building wheel for wrapt (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for wrapt: filename=wrapt-1.11.1-cp36-cp36m-linux_x86_64.whl size=67430 sha256=f843d38d6a7a3933324cc1b0272e730a5b15ac748347d4cf7fc5eb5660fb1139\n",
            "  Stored in directory: /root/.cache/pip/wheels/89/67/41/63cbf0f6ac0a6156588b9587be4db5565f8c6d8ccef98202fc\n",
            "Successfully built joeynmt pyyaml wrapt\n",
            "Installing collected packages: mecab-python3, portalocker, sacrebleu, subword-nmt, pyyaml, lazy-object-proxy, wrapt, typed-ast, astroid, toml, isort, mccabe, pylint, joeynmt\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "  Found existing installation: wrapt 1.12.1\n",
            "    Uninstalling wrapt-1.12.1:\n",
            "      Successfully uninstalled wrapt-1.12.1\n",
            "Successfully installed astroid-2.4.2 isort-4.3.21 joeynmt-0.0.1 lazy-object-proxy-1.4.3 mccabe-0.6.1 mecab-python3-0.996.5 portalocker-1.7.0 pylint-2.5.3 pyyaml-5.3.1 sacrebleu-1.4.12 subword-nmt-0.3.7 toml-0.10.1 typed-ast-1.4.1 wrapt-1.11.1\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "AaE77Tcppex9"
      },
      "source": [
        "# Preprocessing the Data into Subword BPE Tokens\n",
        "\n",
        "- One of the most powerful improvements for agglutinative languages (a feature of most Bantu languages) is using BPE tokenization [ (Sennrich, 2015) ](https://arxiv.org/abs/1508.07909).\n",
        "\n",
        "- It was also shown that by optimizing the umber of BPE codes we significantly improve results for low-resourced languages [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021) [(Martinus, 2019)](https://arxiv.org/abs/1906.05685)\n",
        "\n",
        "- Below we have the scripts for doing BPE tokenization of our data. We use 4000 tokens as recommended by [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021). You do not need to change anything. Simply running the below will be suitable. "
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "H-TyjtmXB1mL",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 425
        },
        "outputId": "2985d384-7d53-4026-8d34-9a8d5de1f0df"
      },
      "source": [
        "#TODO: Skip for retrain\n",
        "# One of the huge boosts in NMT performance was to use a different method of tokenizing. \n",
        "# Usually, NMT would tokenize by words. However, using a method called BPE gave amazing boosts to performance\n",
        "\n",
        "# Do subword NMT\n",
        "from os import path\n",
        "os.environ[\"src\"] = source_language # Sets them in bash as well, since we often use bash scripts\n",
        "os.environ[\"tgt\"] = target_language\n",
        "\n",
        "# Learn BPEs on the training data.\n",
        "os.environ[\"data_path\"] = path.join(\"joeynmt\", \"data\", source_language + target_language) # Herman! \n",
        "! subword-nmt learn-joint-bpe-and-vocab --input train.$src train.$tgt -s 4000 -o bpe.codes.4000 --write-vocabulary vocab.$src vocab.$tgt\n",
        "\n",
        "# Apply BPE splits to the development and test data.\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < train.$src > train.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < train.$tgt > train.bpe.$tgt\n",
        "\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < dev.$src > dev.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < dev.$tgt > dev.bpe.$tgt\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$src < test.$src > test.bpe.$src\n",
        "! subword-nmt apply-bpe -c bpe.codes.4000 --vocabulary vocab.$tgt < test.$tgt > test.bpe.$tgt\n",
        "\n",
        "# Create directory, move everyone we care about to the correct location\n",
        "! mkdir -p $data_path\n",
        "! cp train.* $data_path\n",
        "! cp test.* $data_path\n",
        "! cp dev.* $data_path\n",
        "! cp bpe.codes.4000 $data_path\n",
        "! ls $data_path\n",
        "\n",
        "# Also move everything we care about to a mounted location in google drive (relevant if running in colab) at gdrive_path\n",
        "! cp train.* \"$gdrive_path\"\n",
        "! cp test.* \"$gdrive_path\"\n",
        "! cp dev.* \"$gdrive_path\"\n",
        "! cp bpe.codes.4000 \"$gdrive_path\"\n",
        "! ls \"$gdrive_path\"\n",
        "\n",
        "# Create that vocab using build_vocab\n",
        "! sudo chmod 777 joeynmt/scripts/build_vocab.py\n",
        "! joeynmt/scripts/build_vocab.py joeynmt/data/$src$tgt/train.bpe.$src joeynmt/data/$src$tgt/train.bpe.$tgt --output_path \"$gdrive_path/vocab.txt\"\n",
        "\n",
        "# Some output\n",
        "! echo \"BPE Nyanja Sentences\"\n",
        "! tail -n 5 test.bpe.$tgt\n",
        "! echo \"Combined BPE Vocab\"\n",
        "! tail -n 10 \"$gdrive_path/vocab.txt\"  # Herman"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "bpe.codes.4000\tdev.en\t     test.bpe.nya    test.en-any.en.1  train.bpe.nya\n",
            "dev.bpe.en\tdev.nya      test.en\t     test.nya\t       train.en\n",
            "dev.bpe.nya\ttest.bpe.en  test.en-any.en  train.bpe.en      train.nya\n",
            "bpe.codes.4000\tdev.nya       test.en\t\ttrain.bpe.en\n",
            "dev.bpe.en\tmodels\t      test.en-any.en\ttrain.bpe.nya\n",
            "dev.bpe.nya\ttest.bpe.en   test.en-any.en.1\ttrain.en\n",
            "dev.en\t\ttest.bpe.nya  test.nya\t\ttrain.nya\n",
            "BPE Xhosa Sentences\n",
            "Izi zin@@ acititsa kuti nd@@ iz@@ idz@@ iŵika monga munthu wos@@ aona mtima .\n",
            "N’@@ t@@ aphunzila coonadi , ndin@@ al@@ eka n@@ chit@@ oyo ngakhale kuti n’nali kulandila ndalama zambili .\n",
            "N@@ apeleka citsanzo cabwino kwa ana anga aŵili a@@ amuna , ndipo tsopano n’n@@ a@@ ikidwa pau@@ d@@ indo mumpingo .\n",
            "Cifukwa co@@ khala wo@@ ona mtima , n@@ ili ndi mbili yabwino kwa anthu amene amat@@ enga mis@@ onkh@@ o ndi ena amene nim@@ acita nawo b@@ iz@@ in@@ esi . ”\n",
            "Kum@@ en@@ eko anayamba kulambila Mulungu wo@@ ona .\n",
            "Combined BPE Vocab\n",
            "ʺ\n",
            "righte@@\n",
            "ambuyo\n",
            "amvu\n",
            "dif@@\n",
            "SONG@@\n",
            "cogn@@\n",
            "ʼ@@\n",
            "Ó@@\n",
            "Yosef@@\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "Ixmzi60WsUZ8"
      },
      "source": [
        "# Creating the JoeyNMT Config\n",
        "\n",
        "JoeyNMT requires a yaml config. We provide a template below. We've also set a number of defaults with it, that you may play with!\n",
        "\n",
        "- We used Transformer architecture \n",
        "- We set our dropout to reasonably high: 0.3 (recommended in  [(Sennrich, 2019)](https://www.aclweb.org/anthology/P19-1021))\n",
        "\n",
        "Things worth playing with:\n",
        "- The batch size (also recommended to change for low-resourced languages)\n",
        "- The number of epochs (we've set it at 30 just so it runs in about an hour, for testing purposes)\n",
        "- The decoder options (beam_size, alpha)\n",
        "- Evaluation metrics (BLEU versus Crhf4)"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Wc47fvWqyxbd",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "def get_last_checkpoint(directory):\n",
        "  last_checkpoint = ''\n",
        "  try:\n",
        "    for filename in os.listdir(directory):\n",
        "      if 'best' in filename and filename.endswith(\".ckpt\"):\n",
        "        return filename\n",
        "      if not 'best' in filename and filename.endswith(\".ckpt\"):\n",
        "          if not last_checkpoint or int(filename.split('.')[0]) > int(last_checkpoint.split('.')[0]):\n",
        "            last_checkpoint = filename\n",
        "  except FileNotFoundError as e:\n",
        "    print('Error Occur ', e)\n",
        "  return last_checkpoint"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "x_ffEoFdy1Qo",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 51
        },
        "outputId": "9a8b9540-cf44-4790-9fb8-3e38c4578494"
      },
      "source": [
        "# Copy the created models from the temporary storage to main storage on google drive for persistant storage \n",
        "# the content of te folder will be overwrite when you start trainin\n",
        "!cp -r \"/content/drive/My Drive/masakhane/model-temp/\"* \"$gdrive_path/models/${src}${tgt}_transformer/\"\n",
        "last_checkpoint = get_last_checkpoint(models_path)\n",
        "print('Last checkpoint :',last_checkpoint)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "cp: cannot stat '/content/drive/My Drive/masakhane/model-temp/*': No such file or directory\n",
            "Last checkpoint : \n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "PIs1lY2hxMsl",
        "colab": {}
      },
      "source": [
        "# This creates the config file for our JoeyNMT system. It might seem overwhelming so we've provided a couple of useful parameters you'll need to update\n",
        "# (You can of course play with all the parameters if you'd like!)\n",
        "\n",
        "name = '%s%s' % (source_language, target_language)\n",
        "gdrive_path = os.environ[\"gdrive_path\"]\n",
        "\n",
        "# Create the config\n",
        "config = \"\"\"\n",
        "name: \"{name}_transformer\"\n",
        "\n",
        "data:\n",
        "    src: \"{source_language}\"\n",
        "    trg: \"{target_language}\"\n",
        "    train: \"{gdrive_path}/train.bpe\"\n",
        "    dev:   \"{gdrive_path}/dev.bpe\"\n",
        "    test:  \"{gdrive_path}/test.bpe\"\n",
        "    level: \"bpe\"\n",
        "    lowercase: False\n",
        "    max_sent_length: 100\n",
        "    src_vocab: \"{gdrive_path}/vocab.txt\"\n",
        "    trg_vocab: \"{gdrive_path}/vocab.txt\"\n",
        "\n",
        "testing:\n",
        "    beam_size: 5\n",
        "    alpha: 1.0\n",
        "\n",
        "training:\n",
        "    #load_model: \"{gdrive_path}/models/{name}_transformer/{last_checkpoint}\" # TODO: uncommented to load a pre-trained model from last checkpoint\n",
        "    random_seed: 42\n",
        "    optimizer: \"adam\"\n",
        "    normalization: \"tokens\"\n",
        "    adam_betas: [0.9, 0.999] \n",
        "    scheduling: \"plateau\"           # TODO: try switching from plateau to Noam scheduling\n",
        "    patience: 5                     # For plateau: decrease learning rate by decrease_factor if validation score has not improved for this many validation rounds.\n",
        "    learning_rate_factor: 0.5       # factor for Noam scheduler (used with Transformer)\n",
        "    learning_rate_warmup: 1000      # warmup steps for Noam scheduler (used with Transformer)\n",
        "    decrease_factor: 0.7\n",
        "    loss: \"crossentropy\"\n",
        "    learning_rate: 0.0003\n",
        "    learning_rate_min: 0.00000001\n",
        "    weight_decay: 0.0\n",
        "    label_smoothing: 0.1\n",
        "    batch_size: 4096\n",
        "    batch_type: \"token\"\n",
        "    eval_batch_size: 3600\n",
        "    eval_batch_type: \"token\"\n",
        "    batch_multiplier: 1\n",
        "    early_stopping_metric: \"ppl\"\n",
        "    epochs: 50                     # TODO: Decrease for when playing around and checking of working. Around 30 is sufficient to check if its working at all\n",
        "    validation_freq: 1000          # TODO: Set to at least once per epoch.\n",
        "    logging_freq: 100\n",
        "    eval_metric: \"bleu\"\n",
        "    model_dir: \"{model_temp_dir}\"\n",
        "    overwrite: True               # TODO: Set to True if you want to overwrite possibly existing models. \n",
        "    shuffle: True\n",
        "    use_cuda: True\n",
        "    max_output_length: 100\n",
        "    print_valid_sents: [0, 1, 2, 3]\n",
        "    keep_last_ckpts: 3\n",
        "\n",
        "model:\n",
        "    initializer: \"xavier\"\n",
        "    bias_initializer: \"zeros\"\n",
        "    init_gain: 1.0\n",
        "    embed_initializer: \"xavier\"\n",
        "    embed_init_gain: 1.0\n",
        "    tied_embeddings: True\n",
        "    tied_softmax: True\n",
        "    encoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4             # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256   # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "    decoder:\n",
        "        type: \"transformer\"\n",
        "        num_layers: 6\n",
        "        num_heads: 4              # TODO: Increase to 8 for larger data.\n",
        "        embeddings:\n",
        "            embedding_dim: 256    # TODO: Increase to 512 for larger data.\n",
        "            scale: True\n",
        "            dropout: 0.2\n",
        "        # typically ff_size = 4 x hidden_size\n",
        "        hidden_size: 256         # TODO: Increase to 512 for larger data.\n",
        "        ff_size: 1024            # TODO: Increase to 2048 for larger data.\n",
        "        dropout: 0.3\n",
        "\"\"\".format(name=name, gdrive_path=os.environ[\"gdrive_path\"], source_language=source_language, target_language=target_language, model_temp_dir=model_temp_dir, last_checkpoint=last_checkpoint)\n",
        "with open(\"joeynmt/configs/transformer_{name}.yaml\".format(name=name),'w') as f:\n",
        "    f.write(config)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "pIifxE3Qzuvs"
      },
      "source": [
        "# Train the Model\n",
        "\n",
        "This single line of joeynmt runs the training using the config we made above"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "6ZBPFwT94WpI",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "70255270-149d-47a6-c71e-08d2ac4d67a4"
      },
      "source": [
        "# Train the model\n",
        "# You can press Ctrl-C to stop. And then run the next cell to save your checkpoints! \n",
        "!cd joeynmt; python3 -m joeynmt train configs/transformer_$src$tgt.yaml"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-07-12 20:38:52,275 Hello! This is Joey-NMT.\n",
            "2020-07-12 20:38:52.392375: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n",
            "2020-07-12 20:38:53,554 Total params: 12128768\n",
            "2020-07-12 20:38:53,556 Trainable parameters: ['decoder.layer_norm.bias', 'decoder.layer_norm.weight', 'decoder.layers.0.dec_layer_norm.bias', 'decoder.layers.0.dec_layer_norm.weight', 'decoder.layers.0.feed_forward.layer_norm.bias', 'decoder.layers.0.feed_forward.layer_norm.weight', 'decoder.layers.0.feed_forward.pwff_layer.0.bias', 'decoder.layers.0.feed_forward.pwff_layer.0.weight', 'decoder.layers.0.feed_forward.pwff_layer.3.bias', 'decoder.layers.0.feed_forward.pwff_layer.3.weight', 'decoder.layers.0.src_trg_att.k_layer.bias', 'decoder.layers.0.src_trg_att.k_layer.weight', 'decoder.layers.0.src_trg_att.output_layer.bias', 'decoder.layers.0.src_trg_att.output_layer.weight', 'decoder.layers.0.src_trg_att.q_layer.bias', 'decoder.layers.0.src_trg_att.q_layer.weight', 'decoder.layers.0.src_trg_att.v_layer.bias', 'decoder.layers.0.src_trg_att.v_layer.weight', 'decoder.layers.0.trg_trg_att.k_layer.bias', 'decoder.layers.0.trg_trg_att.k_layer.weight', 'decoder.layers.0.trg_trg_att.output_layer.bias', 'decoder.layers.0.trg_trg_att.output_layer.weight', 'decoder.layers.0.trg_trg_att.q_layer.bias', 'decoder.layers.0.trg_trg_att.q_layer.weight', 'decoder.layers.0.trg_trg_att.v_layer.bias', 'decoder.layers.0.trg_trg_att.v_layer.weight', 'decoder.layers.0.x_layer_norm.bias', 'decoder.layers.0.x_layer_norm.weight', 'decoder.layers.1.dec_layer_norm.bias', 'decoder.layers.1.dec_layer_norm.weight', 'decoder.layers.1.feed_forward.layer_norm.bias', 'decoder.layers.1.feed_forward.layer_norm.weight', 'decoder.layers.1.feed_forward.pwff_layer.0.bias', 'decoder.layers.1.feed_forward.pwff_layer.0.weight', 'decoder.layers.1.feed_forward.pwff_layer.3.bias', 'decoder.layers.1.feed_forward.pwff_layer.3.weight', 'decoder.layers.1.src_trg_att.k_layer.bias', 'decoder.layers.1.src_trg_att.k_layer.weight', 'decoder.layers.1.src_trg_att.output_layer.bias', 'decoder.layers.1.src_trg_att.output_layer.weight', 'decoder.layers.1.src_trg_att.q_layer.bias', 'decoder.layers.1.src_trg_att.q_layer.weight', 'decoder.layers.1.src_trg_att.v_layer.bias', 'decoder.layers.1.src_trg_att.v_layer.weight', 'decoder.layers.1.trg_trg_att.k_layer.bias', 'decoder.layers.1.trg_trg_att.k_layer.weight', 'decoder.layers.1.trg_trg_att.output_layer.bias', 'decoder.layers.1.trg_trg_att.output_layer.weight', 'decoder.layers.1.trg_trg_att.q_layer.bias', 'decoder.layers.1.trg_trg_att.q_layer.weight', 'decoder.layers.1.trg_trg_att.v_layer.bias', 'decoder.layers.1.trg_trg_att.v_layer.weight', 'decoder.layers.1.x_layer_norm.bias', 'decoder.layers.1.x_layer_norm.weight', 'decoder.layers.2.dec_layer_norm.bias', 'decoder.layers.2.dec_layer_norm.weight', 'decoder.layers.2.feed_forward.layer_norm.bias', 'decoder.layers.2.feed_forward.layer_norm.weight', 'decoder.layers.2.feed_forward.pwff_layer.0.bias', 'decoder.layers.2.feed_forward.pwff_layer.0.weight', 'decoder.layers.2.feed_forward.pwff_layer.3.bias', 'decoder.layers.2.feed_forward.pwff_layer.3.weight', 'decoder.layers.2.src_trg_att.k_layer.bias', 'decoder.layers.2.src_trg_att.k_layer.weight', 'decoder.layers.2.src_trg_att.output_layer.bias', 'decoder.layers.2.src_trg_att.output_layer.weight', 'decoder.layers.2.src_trg_att.q_layer.bias', 'decoder.layers.2.src_trg_att.q_layer.weight', 'decoder.layers.2.src_trg_att.v_layer.bias', 'decoder.layers.2.src_trg_att.v_layer.weight', 'decoder.layers.2.trg_trg_att.k_layer.bias', 'decoder.layers.2.trg_trg_att.k_layer.weight', 'decoder.layers.2.trg_trg_att.output_layer.bias', 'decoder.layers.2.trg_trg_att.output_layer.weight', 'decoder.layers.2.trg_trg_att.q_layer.bias', 'decoder.layers.2.trg_trg_att.q_layer.weight', 'decoder.layers.2.trg_trg_att.v_layer.bias', 'decoder.layers.2.trg_trg_att.v_layer.weight', 'decoder.layers.2.x_layer_norm.bias', 'decoder.layers.2.x_layer_norm.weight', 'decoder.layers.3.dec_layer_norm.bias', 'decoder.layers.3.dec_layer_norm.weight', 'decoder.layers.3.feed_forward.layer_norm.bias', 'decoder.layers.3.feed_forward.layer_norm.weight', 'decoder.layers.3.feed_forward.pwff_layer.0.bias', 'decoder.layers.3.feed_forward.pwff_layer.0.weight', 'decoder.layers.3.feed_forward.pwff_layer.3.bias', 'decoder.layers.3.feed_forward.pwff_layer.3.weight', 'decoder.layers.3.src_trg_att.k_layer.bias', 'decoder.layers.3.src_trg_att.k_layer.weight', 'decoder.layers.3.src_trg_att.output_layer.bias', 'decoder.layers.3.src_trg_att.output_layer.weight', 'decoder.layers.3.src_trg_att.q_layer.bias', 'decoder.layers.3.src_trg_att.q_layer.weight', 'decoder.layers.3.src_trg_att.v_layer.bias', 'decoder.layers.3.src_trg_att.v_layer.weight', 'decoder.layers.3.trg_trg_att.k_layer.bias', 'decoder.layers.3.trg_trg_att.k_layer.weight', 'decoder.layers.3.trg_trg_att.output_layer.bias', 'decoder.layers.3.trg_trg_att.output_layer.weight', 'decoder.layers.3.trg_trg_att.q_layer.bias', 'decoder.layers.3.trg_trg_att.q_layer.weight', 'decoder.layers.3.trg_trg_att.v_layer.bias', 'decoder.layers.3.trg_trg_att.v_layer.weight', 'decoder.layers.3.x_layer_norm.bias', 'decoder.layers.3.x_layer_norm.weight', 'decoder.layers.4.dec_layer_norm.bias', 'decoder.layers.4.dec_layer_norm.weight', 'decoder.layers.4.feed_forward.layer_norm.bias', 'decoder.layers.4.feed_forward.layer_norm.weight', 'decoder.layers.4.feed_forward.pwff_layer.0.bias', 'decoder.layers.4.feed_forward.pwff_layer.0.weight', 'decoder.layers.4.feed_forward.pwff_layer.3.bias', 'decoder.layers.4.feed_forward.pwff_layer.3.weight', 'decoder.layers.4.src_trg_att.k_layer.bias', 'decoder.layers.4.src_trg_att.k_layer.weight', 'decoder.layers.4.src_trg_att.output_layer.bias', 'decoder.layers.4.src_trg_att.output_layer.weight', 'decoder.layers.4.src_trg_att.q_layer.bias', 'decoder.layers.4.src_trg_att.q_layer.weight', 'decoder.layers.4.src_trg_att.v_layer.bias', 'decoder.layers.4.src_trg_att.v_layer.weight', 'decoder.layers.4.trg_trg_att.k_layer.bias', 'decoder.layers.4.trg_trg_att.k_layer.weight', 'decoder.layers.4.trg_trg_att.output_layer.bias', 'decoder.layers.4.trg_trg_att.output_layer.weight', 'decoder.layers.4.trg_trg_att.q_layer.bias', 'decoder.layers.4.trg_trg_att.q_layer.weight', 'decoder.layers.4.trg_trg_att.v_layer.bias', 'decoder.layers.4.trg_trg_att.v_layer.weight', 'decoder.layers.4.x_layer_norm.bias', 'decoder.layers.4.x_layer_norm.weight', 'decoder.layers.5.dec_layer_norm.bias', 'decoder.layers.5.dec_layer_norm.weight', 'decoder.layers.5.feed_forward.layer_norm.bias', 'decoder.layers.5.feed_forward.layer_norm.weight', 'decoder.layers.5.feed_forward.pwff_layer.0.bias', 'decoder.layers.5.feed_forward.pwff_layer.0.weight', 'decoder.layers.5.feed_forward.pwff_layer.3.bias', 'decoder.layers.5.feed_forward.pwff_layer.3.weight', 'decoder.layers.5.src_trg_att.k_layer.bias', 'decoder.layers.5.src_trg_att.k_layer.weight', 'decoder.layers.5.src_trg_att.output_layer.bias', 'decoder.layers.5.src_trg_att.output_layer.weight', 'decoder.layers.5.src_trg_att.q_layer.bias', 'decoder.layers.5.src_trg_att.q_layer.weight', 'decoder.layers.5.src_trg_att.v_layer.bias', 'decoder.layers.5.src_trg_att.v_layer.weight', 'decoder.layers.5.trg_trg_att.k_layer.bias', 'decoder.layers.5.trg_trg_att.k_layer.weight', 'decoder.layers.5.trg_trg_att.output_layer.bias', 'decoder.layers.5.trg_trg_att.output_layer.weight', 'decoder.layers.5.trg_trg_att.q_layer.bias', 'decoder.layers.5.trg_trg_att.q_layer.weight', 'decoder.layers.5.trg_trg_att.v_layer.bias', 'decoder.layers.5.trg_trg_att.v_layer.weight', 'decoder.layers.5.x_layer_norm.bias', 'decoder.layers.5.x_layer_norm.weight', 'encoder.layer_norm.bias', 'encoder.layer_norm.weight', 'encoder.layers.0.feed_forward.layer_norm.bias', 'encoder.layers.0.feed_forward.layer_norm.weight', 'encoder.layers.0.feed_forward.pwff_layer.0.bias', 'encoder.layers.0.feed_forward.pwff_layer.0.weight', 'encoder.layers.0.feed_forward.pwff_layer.3.bias', 'encoder.layers.0.feed_forward.pwff_layer.3.weight', 'encoder.layers.0.layer_norm.bias', 'encoder.layers.0.layer_norm.weight', 'encoder.layers.0.src_src_att.k_layer.bias', 'encoder.layers.0.src_src_att.k_layer.weight', 'encoder.layers.0.src_src_att.output_layer.bias', 'encoder.layers.0.src_src_att.output_layer.weight', 'encoder.layers.0.src_src_att.q_layer.bias', 'encoder.layers.0.src_src_att.q_layer.weight', 'encoder.layers.0.src_src_att.v_layer.bias', 'encoder.layers.0.src_src_att.v_layer.weight', 'encoder.layers.1.feed_forward.layer_norm.bias', 'encoder.layers.1.feed_forward.layer_norm.weight', 'encoder.layers.1.feed_forward.pwff_layer.0.bias', 'encoder.layers.1.feed_forward.pwff_layer.0.weight', 'encoder.layers.1.feed_forward.pwff_layer.3.bias', 'encoder.layers.1.feed_forward.pwff_layer.3.weight', 'encoder.layers.1.layer_norm.bias', 'encoder.layers.1.layer_norm.weight', 'encoder.layers.1.src_src_att.k_layer.bias', 'encoder.layers.1.src_src_att.k_layer.weight', 'encoder.layers.1.src_src_att.output_layer.bias', 'encoder.layers.1.src_src_att.output_layer.weight', 'encoder.layers.1.src_src_att.q_layer.bias', 'encoder.layers.1.src_src_att.q_layer.weight', 'encoder.layers.1.src_src_att.v_layer.bias', 'encoder.layers.1.src_src_att.v_layer.weight', 'encoder.layers.2.feed_forward.layer_norm.bias', 'encoder.layers.2.feed_forward.layer_norm.weight', 'encoder.layers.2.feed_forward.pwff_layer.0.bias', 'encoder.layers.2.feed_forward.pwff_layer.0.weight', 'encoder.layers.2.feed_forward.pwff_layer.3.bias', 'encoder.layers.2.feed_forward.pwff_layer.3.weight', 'encoder.layers.2.layer_norm.bias', 'encoder.layers.2.layer_norm.weight', 'encoder.layers.2.src_src_att.k_layer.bias', 'encoder.layers.2.src_src_att.k_layer.weight', 'encoder.layers.2.src_src_att.output_layer.bias', 'encoder.layers.2.src_src_att.output_layer.weight', 'encoder.layers.2.src_src_att.q_layer.bias', 'encoder.layers.2.src_src_att.q_layer.weight', 'encoder.layers.2.src_src_att.v_layer.bias', 'encoder.layers.2.src_src_att.v_layer.weight', 'encoder.layers.3.feed_forward.layer_norm.bias', 'encoder.layers.3.feed_forward.layer_norm.weight', 'encoder.layers.3.feed_forward.pwff_layer.0.bias', 'encoder.layers.3.feed_forward.pwff_layer.0.weight', 'encoder.layers.3.feed_forward.pwff_layer.3.bias', 'encoder.layers.3.feed_forward.pwff_layer.3.weight', 'encoder.layers.3.layer_norm.bias', 'encoder.layers.3.layer_norm.weight', 'encoder.layers.3.src_src_att.k_layer.bias', 'encoder.layers.3.src_src_att.k_layer.weight', 'encoder.layers.3.src_src_att.output_layer.bias', 'encoder.layers.3.src_src_att.output_layer.weight', 'encoder.layers.3.src_src_att.q_layer.bias', 'encoder.layers.3.src_src_att.q_layer.weight', 'encoder.layers.3.src_src_att.v_layer.bias', 'encoder.layers.3.src_src_att.v_layer.weight', 'encoder.layers.4.feed_forward.layer_norm.bias', 'encoder.layers.4.feed_forward.layer_norm.weight', 'encoder.layers.4.feed_forward.pwff_layer.0.bias', 'encoder.layers.4.feed_forward.pwff_layer.0.weight', 'encoder.layers.4.feed_forward.pwff_layer.3.bias', 'encoder.layers.4.feed_forward.pwff_layer.3.weight', 'encoder.layers.4.layer_norm.bias', 'encoder.layers.4.layer_norm.weight', 'encoder.layers.4.src_src_att.k_layer.bias', 'encoder.layers.4.src_src_att.k_layer.weight', 'encoder.layers.4.src_src_att.output_layer.bias', 'encoder.layers.4.src_src_att.output_layer.weight', 'encoder.layers.4.src_src_att.q_layer.bias', 'encoder.layers.4.src_src_att.q_layer.weight', 'encoder.layers.4.src_src_att.v_layer.bias', 'encoder.layers.4.src_src_att.v_layer.weight', 'encoder.layers.5.feed_forward.layer_norm.bias', 'encoder.layers.5.feed_forward.layer_norm.weight', 'encoder.layers.5.feed_forward.pwff_layer.0.bias', 'encoder.layers.5.feed_forward.pwff_layer.0.weight', 'encoder.layers.5.feed_forward.pwff_layer.3.bias', 'encoder.layers.5.feed_forward.pwff_layer.3.weight', 'encoder.layers.5.layer_norm.bias', 'encoder.layers.5.layer_norm.weight', 'encoder.layers.5.src_src_att.k_layer.bias', 'encoder.layers.5.src_src_att.k_layer.weight', 'encoder.layers.5.src_src_att.output_layer.bias', 'encoder.layers.5.src_src_att.output_layer.weight', 'encoder.layers.5.src_src_att.q_layer.bias', 'encoder.layers.5.src_src_att.q_layer.weight', 'encoder.layers.5.src_src_att.v_layer.bias', 'encoder.layers.5.src_src_att.v_layer.weight', 'src_embed.lut.weight']\n",
            "2020-07-12 20:39:09,397 cfg.name                           : ennya_transformer\n",
            "2020-07-12 20:39:09,398 cfg.data.src                       : en\n",
            "2020-07-12 20:39:09,398 cfg.data.trg                       : nya\n",
            "2020-07-12 20:39:09,398 cfg.data.train                     : /content/drive/My Drive/masakhane/en-nya-baseline/train.bpe\n",
            "2020-07-12 20:39:09,398 cfg.data.dev                       : /content/drive/My Drive/masakhane/en-nya-baseline/dev.bpe\n",
            "2020-07-12 20:39:09,398 cfg.data.test                      : /content/drive/My Drive/masakhane/en-nya-baseline/test.bpe\n",
            "2020-07-12 20:39:09,398 cfg.data.level                     : bpe\n",
            "2020-07-12 20:39:09,399 cfg.data.lowercase                 : False\n",
            "2020-07-12 20:39:09,399 cfg.data.max_sent_length           : 100\n",
            "2020-07-12 20:39:09,399 cfg.data.src_vocab                 : /content/drive/My Drive/masakhane/en-nya-baseline/vocab.txt\n",
            "2020-07-12 20:39:09,399 cfg.data.trg_vocab                 : /content/drive/My Drive/masakhane/en-nya-baseline/vocab.txt\n",
            "2020-07-12 20:39:09,399 cfg.testing.beam_size              : 5\n",
            "2020-07-12 20:39:09,399 cfg.testing.alpha                  : 1.0\n",
            "2020-07-12 20:39:09,399 cfg.training.random_seed           : 42\n",
            "2020-07-12 20:39:09,400 cfg.training.optimizer             : adam\n",
            "2020-07-12 20:39:09,400 cfg.training.normalization         : tokens\n",
            "2020-07-12 20:39:09,400 cfg.training.adam_betas            : [0.9, 0.999]\n",
            "2020-07-12 20:39:09,400 cfg.training.scheduling            : plateau\n",
            "2020-07-12 20:39:09,400 cfg.training.patience              : 5\n",
            "2020-07-12 20:39:09,400 cfg.training.learning_rate_factor  : 0.5\n",
            "2020-07-12 20:39:09,400 cfg.training.learning_rate_warmup  : 1000\n",
            "2020-07-12 20:39:09,401 cfg.training.decrease_factor       : 0.7\n",
            "2020-07-12 20:39:09,401 cfg.training.loss                  : crossentropy\n",
            "2020-07-12 20:39:09,401 cfg.training.learning_rate         : 0.0003\n",
            "2020-07-12 20:39:09,401 cfg.training.learning_rate_min     : 1e-08\n",
            "2020-07-12 20:39:09,401 cfg.training.weight_decay          : 0.0\n",
            "2020-07-12 20:39:09,401 cfg.training.label_smoothing       : 0.1\n",
            "2020-07-12 20:39:09,401 cfg.training.batch_size            : 4096\n",
            "2020-07-12 20:39:09,401 cfg.training.batch_type            : token\n",
            "2020-07-12 20:39:09,402 cfg.training.eval_batch_size       : 3600\n",
            "2020-07-12 20:39:09,402 cfg.training.eval_batch_type       : token\n",
            "2020-07-12 20:39:09,402 cfg.training.batch_multiplier      : 1\n",
            "2020-07-12 20:39:09,402 cfg.training.early_stopping_metric : ppl\n",
            "2020-07-12 20:39:09,402 cfg.training.epochs                : 50\n",
            "2020-07-12 20:39:09,402 cfg.training.validation_freq       : 1000\n",
            "2020-07-12 20:39:09,402 cfg.training.logging_freq          : 100\n",
            "2020-07-12 20:39:09,403 cfg.training.eval_metric           : bleu\n",
            "2020-07-12 20:39:09,403 cfg.training.model_dir             : /content/drive/My Drive/masakhane/model-temp\n",
            "2020-07-12 20:39:09,403 cfg.training.overwrite             : True\n",
            "2020-07-12 20:39:09,403 cfg.training.shuffle               : True\n",
            "2020-07-12 20:39:09,403 cfg.training.use_cuda              : True\n",
            "2020-07-12 20:39:09,403 cfg.training.max_output_length     : 100\n",
            "2020-07-12 20:39:09,403 cfg.training.print_valid_sents     : [0, 1, 2, 3]\n",
            "2020-07-12 20:39:09,404 cfg.training.keep_last_ckpts       : 3\n",
            "2020-07-12 20:39:09,404 cfg.model.initializer              : xavier\n",
            "2020-07-12 20:39:09,404 cfg.model.bias_initializer         : zeros\n",
            "2020-07-12 20:39:09,404 cfg.model.init_gain                : 1.0\n",
            "2020-07-12 20:39:09,404 cfg.model.embed_initializer        : xavier\n",
            "2020-07-12 20:39:09,404 cfg.model.embed_init_gain          : 1.0\n",
            "2020-07-12 20:39:09,404 cfg.model.tied_embeddings          : True\n",
            "2020-07-12 20:39:09,405 cfg.model.tied_softmax             : True\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.type             : transformer\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.num_layers       : 6\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.num_heads        : 4\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.embeddings.embedding_dim : 256\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.embeddings.scale : True\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.embeddings.dropout : 0.2\n",
            "2020-07-12 20:39:09,405 cfg.model.encoder.hidden_size      : 256\n",
            "2020-07-12 20:39:09,406 cfg.model.encoder.ff_size          : 1024\n",
            "2020-07-12 20:39:09,406 cfg.model.encoder.dropout          : 0.3\n",
            "2020-07-12 20:39:09,406 cfg.model.decoder.type             : transformer\n",
            "2020-07-12 20:39:09,406 cfg.model.decoder.num_layers       : 6\n",
            "2020-07-12 20:39:09,406 cfg.model.decoder.num_heads        : 4\n",
            "2020-07-12 20:39:09,406 cfg.model.decoder.embeddings.embedding_dim : 256\n",
            "2020-07-12 20:39:09,406 cfg.model.decoder.embeddings.scale : True\n",
            "2020-07-12 20:39:09,407 cfg.model.decoder.embeddings.dropout : 0.2\n",
            "2020-07-12 20:39:09,407 cfg.model.decoder.hidden_size      : 256\n",
            "2020-07-12 20:39:09,407 cfg.model.decoder.ff_size          : 1024\n",
            "2020-07-12 20:39:09,407 cfg.model.decoder.dropout          : 0.3\n",
            "2020-07-12 20:39:09,407 Data set sizes: \n",
            "\ttrain 49851,\n",
            "\tvalid 1000,\n",
            "\ttest 2672\n",
            "2020-07-12 20:39:09,407 First training example:\n",
            "\t[SRC] How Job came to know Jehovah .\n",
            "\t[TRG] M@@ mene Yobu anadz@@ iŵ@@ ila Yehova .\n",
            "2020-07-12 20:39:09,408 First 10 words (src): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) the (7) to (8) a (9) :\n",
            "2020-07-12 20:39:09,408 First 10 words (trg): (0) <unk> (1) <pad> (2) <s> (3) </s> (4) . (5) , (6) the (7) to (8) a (9) :\n",
            "2020-07-12 20:39:09,408 Number of Src words (types): 4174\n",
            "2020-07-12 20:39:09,409 Number of Trg words (types): 4174\n",
            "2020-07-12 20:39:09,409 Model(\n",
            "\tencoder=TransformerEncoder(num_layers=6, num_heads=4),\n",
            "\tdecoder=TransformerDecoder(num_layers=6, num_heads=4),\n",
            "\tsrc_embed=Embeddings(embedding_dim=256, vocab_size=4174),\n",
            "\ttrg_embed=Embeddings(embedding_dim=256, vocab_size=4174))\n",
            "2020-07-12 20:39:09,418 EPOCH 1\n",
            "/pytorch/torch/csrc/utils/python_arg_parser.cpp:756: UserWarning: This overload of nonzero is deprecated:\n",
            "\tnonzero(Tensor input, *, Tensor out)\n",
            "Consider using one of the following signatures instead:\n",
            "\tnonzero(Tensor input, *, bool as_tuple)\n",
            "2020-07-12 20:39:28,225 Epoch   1 Step:      100 Batch Loss:     5.851800 Tokens per Sec:    11050, Lr: 0.000300\n",
            "2020-07-12 20:39:46,905 Epoch   1 Step:      200 Batch Loss:     5.502884 Tokens per Sec:    11317, Lr: 0.000300\n",
            "2020-07-12 20:40:05,233 Epoch   1 Step:      300 Batch Loss:     5.292922 Tokens per Sec:    11160, Lr: 0.000300\n",
            "2020-07-12 20:40:23,613 Epoch   1 Step:      400 Batch Loss:     5.175645 Tokens per Sec:    11256, Lr: 0.000300\n",
            "2020-07-12 20:40:41,982 Epoch   1 Step:      500 Batch Loss:     4.725220 Tokens per Sec:    11361, Lr: 0.000300\n",
            "2020-07-12 20:40:56,727 Epoch   1: total training loss 3090.93\n",
            "2020-07-12 20:40:56,728 EPOCH 2\n",
            "2020-07-12 20:41:00,417 Epoch   2 Step:      600 Batch Loss:     4.830907 Tokens per Sec:    11316, Lr: 0.000300\n",
            "2020-07-12 20:41:18,572 Epoch   2 Step:      700 Batch Loss:     4.736766 Tokens per Sec:    11298, Lr: 0.000300\n",
            "2020-07-12 20:41:36,802 Epoch   2 Step:      800 Batch Loss:     4.635335 Tokens per Sec:    11134, Lr: 0.000300\n",
            "2020-07-12 20:41:55,103 Epoch   2 Step:      900 Batch Loss:     4.045403 Tokens per Sec:    11358, Lr: 0.000300\n",
            "2020-07-12 20:42:13,600 Epoch   2 Step:     1000 Batch Loss:     4.308612 Tokens per Sec:    11398, Lr: 0.000300\n",
            "2020-07-12 20:42:55,456 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 20:42:55,456 Saving new checkpoint.\n",
            "2020-07-12 20:42:56,628 Example #0\n",
            "2020-07-12 20:42:56,628 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 20:42:56,629 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 20:42:56,629 \tHypothesis: ( 1 : 3 ) Kodi anthu amene anali kuthandiza kuti anali kuthandiza kuti anali kuthandiza .\n",
            "2020-07-12 20:42:56,629 Example #1\n",
            "2020-07-12 20:42:56,629 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 20:42:56,630 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 20:42:56,630 \tHypothesis: ( 1 : 1 ) Koma anthu amene anali kuthandiza kuti anali kukuthandiza .\n",
            "2020-07-12 20:42:56,630 Example #2\n",
            "2020-07-12 20:42:56,630 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 20:42:56,630 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 20:42:56,630 \tHypothesis: ( b ) Kodi anthu a Mulungu amene anali kuthandiza bwanji kuti : “ Kodi Yehova ?\n",
            "2020-07-12 20:42:56,631 Example #3\n",
            "2020-07-12 20:42:56,631 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 20:42:56,631 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 20:42:56,631 \tHypothesis: Kodi Malile\n",
            "2020-07-12 20:42:56,631 Validation result (greedy) at epoch   2, step     1000: bleu:   0.73, loss: 104985.1797, ppl:  69.0250, duration: 43.0307s\n",
            "2020-07-12 20:43:15,235 Epoch   2 Step:     1100 Batch Loss:     4.252433 Tokens per Sec:    11137, Lr: 0.000300\n",
            "2020-07-12 20:43:27,269 Epoch   2: total training loss 2596.20\n",
            "2020-07-12 20:43:27,270 EPOCH 3\n",
            "2020-07-12 20:43:33,992 Epoch   3 Step:     1200 Batch Loss:     3.654455 Tokens per Sec:    11098, Lr: 0.000300\n",
            "2020-07-12 20:43:52,339 Epoch   3 Step:     1300 Batch Loss:     3.389505 Tokens per Sec:    11076, Lr: 0.000300\n",
            "2020-07-12 20:44:11,141 Epoch   3 Step:     1400 Batch Loss:     3.965687 Tokens per Sec:    11462, Lr: 0.000300\n",
            "2020-07-12 20:44:29,325 Epoch   3 Step:     1500 Batch Loss:     3.584218 Tokens per Sec:    11146, Lr: 0.000300\n",
            "2020-07-12 20:44:47,940 Epoch   3 Step:     1600 Batch Loss:     3.427156 Tokens per Sec:    11108, Lr: 0.000300\n",
            "2020-07-12 20:45:06,608 Epoch   3 Step:     1700 Batch Loss:     4.065697 Tokens per Sec:    11517, Lr: 0.000300\n",
            "2020-07-12 20:45:14,535 Epoch   3: total training loss 2279.14\n",
            "2020-07-12 20:45:14,536 EPOCH 4\n",
            "2020-07-12 20:45:25,196 Epoch   4 Step:     1800 Batch Loss:     3.446399 Tokens per Sec:    11137, Lr: 0.000300\n",
            "2020-07-12 20:45:43,520 Epoch   4 Step:     1900 Batch Loss:     3.538134 Tokens per Sec:    11206, Lr: 0.000300\n",
            "2020-07-12 20:46:02,213 Epoch   4 Step:     2000 Batch Loss:     3.472388 Tokens per Sec:    11551, Lr: 0.000300\n",
            "2020-07-12 20:46:31,222 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 20:46:31,223 Saving new checkpoint.\n",
            "2020-07-12 20:46:32,434 Example #0\n",
            "2020-07-12 20:46:32,434 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 20:46:32,434 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 20:46:32,434 \tHypothesis: Kodi anthu ambili ambili ambili anali kudya ku dziko lapansi ?\n",
            "2020-07-12 20:46:32,435 Example #1\n",
            "2020-07-12 20:46:32,435 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 20:46:32,435 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 20:46:32,435 \tHypothesis: Iye anali kudya , ndipo anali kudya ku Yerusalemu .\n",
            "2020-07-12 20:46:32,436 Example #2\n",
            "2020-07-12 20:46:32,436 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 20:46:32,436 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 20:46:32,436 \tHypothesis: Kodi Yesu anakamba kuti anthu a Yesu anali ndi mau a Yesu ?\n",
            "2020-07-12 20:46:32,437 Example #3\n",
            "2020-07-12 20:46:32,437 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 20:46:32,437 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 20:46:32,437 \tHypothesis: Kodi Mfundo ya Mudzi Wosiyana ndi Mtima\n",
            "2020-07-12 20:46:32,437 Validation result (greedy) at epoch   4, step     2000: bleu:   2.10, loss: 87342.0547, ppl:  33.8809, duration: 30.2243s\n",
            "2020-07-12 20:46:50,898 Epoch   4 Step:     2100 Batch Loss:     3.669708 Tokens per Sec:    11043, Lr: 0.000300\n",
            "2020-07-12 20:47:09,397 Epoch   4 Step:     2200 Batch Loss:     3.272874 Tokens per Sec:    11294, Lr: 0.000300\n",
            "2020-07-12 20:47:27,868 Epoch   4 Step:     2300 Batch Loss:     3.434987 Tokens per Sec:    11149, Lr: 0.000300\n",
            "2020-07-12 20:47:32,157 Epoch   4: total training loss 2088.17\n",
            "2020-07-12 20:47:32,158 EPOCH 5\n",
            "2020-07-12 20:47:46,655 Epoch   5 Step:     2400 Batch Loss:     2.883982 Tokens per Sec:    11188, Lr: 0.000300\n",
            "2020-07-12 20:48:05,133 Epoch   5 Step:     2500 Batch Loss:     3.808741 Tokens per Sec:    11522, Lr: 0.000300\n",
            "2020-07-12 20:48:23,395 Epoch   5 Step:     2600 Batch Loss:     3.231003 Tokens per Sec:    11131, Lr: 0.000300\n",
            "2020-07-12 20:48:41,768 Epoch   5 Step:     2700 Batch Loss:     3.547242 Tokens per Sec:    11405, Lr: 0.000300\n",
            "2020-07-12 20:49:00,056 Epoch   5 Step:     2800 Batch Loss:     3.122620 Tokens per Sec:    11173, Lr: 0.000300\n",
            "2020-07-12 20:49:18,411 Epoch   5 Step:     2900 Batch Loss:     3.458104 Tokens per Sec:    11189, Lr: 0.000300\n",
            "2020-07-12 20:49:19,182 Epoch   5: total training loss 1954.32\n",
            "2020-07-12 20:49:19,182 EPOCH 6\n",
            "2020-07-12 20:49:37,162 Epoch   6 Step:     3000 Batch Loss:     3.304617 Tokens per Sec:    11262, Lr: 0.000300\n",
            "2020-07-12 20:49:56,697 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 20:49:56,697 Saving new checkpoint.\n",
            "2020-07-12 20:49:57,944 Example #0\n",
            "2020-07-12 20:49:57,945 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 20:49:57,945 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 20:49:57,945 \tHypothesis: Tinali kufunitsitsa kukonzekela nchito yolalikila yolalikila yolalikila yolalikila .\n",
            "2020-07-12 20:49:57,946 Example #1\n",
            "2020-07-12 20:49:57,946 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 20:49:57,947 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 20:49:57,947 \tHypothesis: Iye anali kufunitsitsa kucita zimenezi , ndipo anali kudya zaka zambili .\n",
            "2020-07-12 20:49:57,947 Example #2\n",
            "2020-07-12 20:49:57,948 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 20:49:57,948 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 20:49:57,948 \tHypothesis: Kodi Mose anacita ciani kuti ophunzila ake adzagwilitsila nchito mau a Paulo ?\n",
            "2020-07-12 20:49:57,948 Example #3\n",
            "2020-07-12 20:49:57,949 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 20:49:57,949 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 20:49:57,949 \tHypothesis: Kudziŵa kuti Mmene Mmene Mmene Mmene Mmene Mmene Mudziŵa\n",
            "2020-07-12 20:49:57,949 Validation result (greedy) at epoch   6, step     3000: bleu:   3.32, loss: 78307.3125, ppl:  23.5340, duration: 20.7865s\n",
            "2020-07-12 20:50:16,871 Epoch   6 Step:     3100 Batch Loss:     3.466974 Tokens per Sec:    11099, Lr: 0.000300\n",
            "2020-07-12 20:50:35,318 Epoch   6 Step:     3200 Batch Loss:     2.713333 Tokens per Sec:    10942, Lr: 0.000300\n",
            "2020-07-12 20:50:53,654 Epoch   6 Step:     3300 Batch Loss:     3.480570 Tokens per Sec:    11215, Lr: 0.000300\n",
            "2020-07-12 20:51:12,139 Epoch   6 Step:     3400 Batch Loss:     2.565523 Tokens per Sec:    11391, Lr: 0.000300\n",
            "2020-07-12 20:51:28,070 Epoch   6: total training loss 1860.15\n",
            "2020-07-12 20:51:28,070 EPOCH 7\n",
            "2020-07-12 20:51:30,605 Epoch   7 Step:     3500 Batch Loss:     3.121952 Tokens per Sec:    10914, Lr: 0.000300\n",
            "2020-07-12 20:51:49,109 Epoch   7 Step:     3600 Batch Loss:     2.306157 Tokens per Sec:    11148, Lr: 0.000300\n",
            "2020-07-12 20:52:07,713 Epoch   7 Step:     3700 Batch Loss:     2.988599 Tokens per Sec:    11346, Lr: 0.000300\n",
            "2020-07-12 20:52:26,172 Epoch   7 Step:     3800 Batch Loss:     3.353390 Tokens per Sec:    11405, Lr: 0.000300\n",
            "2020-07-12 20:52:44,412 Epoch   7 Step:     3900 Batch Loss:     2.968240 Tokens per Sec:    11083, Lr: 0.000300\n",
            "2020-07-12 20:53:02,675 Epoch   7 Step:     4000 Batch Loss:     2.396898 Tokens per Sec:    11183, Lr: 0.000300\n",
            "2020-07-12 20:53:26,332 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 20:53:26,332 Saving new checkpoint.\n",
            "2020-07-12 20:53:27,500 Example #0\n",
            "2020-07-12 20:53:27,500 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 20:53:27,501 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 20:53:27,501 \tHypothesis: Tidzakhala ndi mavuto amene tinali kukumana nao padziko lonse .\n",
            "2020-07-12 20:53:27,501 Example #1\n",
            "2020-07-12 20:53:27,502 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 20:53:27,502 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 20:53:27,502 \tHypothesis: Iye angacite zimenezi , ndipo anali kudya zonsezi .\n",
            "2020-07-12 20:53:27,502 Example #2\n",
            "2020-07-12 20:53:27,502 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 20:53:27,502 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 20:53:27,503 \tHypothesis: Kodi Mose anakamba ciani ponena za anthu amene Paulo analemba kuti : “ Kodi mau a Paulo a Paulo ali ndi mau a Paulo ?\n",
            "2020-07-12 20:53:27,503 Example #3\n",
            "2020-07-12 20:53:27,503 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 20:53:27,503 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 20:53:27,503 \tHypothesis: Kuwonjezela apo , Nchito Yabwino Amene Ahabu\n",
            "2020-07-12 20:53:27,504 Validation result (greedy) at epoch   7, step     4000: bleu:   5.24, loss: 72736.8750, ppl:  18.7983, duration: 24.8278s\n",
            "2020-07-12 20:53:40,429 Epoch   7: total training loss 1776.31\n",
            "2020-07-12 20:53:40,429 EPOCH 8\n",
            "2020-07-12 20:53:46,268 Epoch   8 Step:     4100 Batch Loss:     2.750468 Tokens per Sec:    11046, Lr: 0.000300\n",
            "2020-07-12 20:54:04,739 Epoch   8 Step:     4200 Batch Loss:     3.271371 Tokens per Sec:    11177, Lr: 0.000300\n",
            "2020-07-12 20:54:23,319 Epoch   8 Step:     4300 Batch Loss:     3.047179 Tokens per Sec:    11402, Lr: 0.000300\n",
            "2020-07-12 20:54:41,779 Epoch   8 Step:     4400 Batch Loss:     2.842948 Tokens per Sec:    11260, Lr: 0.000300\n",
            "2020-07-12 20:55:00,279 Epoch   8 Step:     4500 Batch Loss:     2.115280 Tokens per Sec:    11292, Lr: 0.000300\n",
            "2020-07-12 20:55:18,684 Epoch   8 Step:     4600 Batch Loss:     1.979993 Tokens per Sec:    11151, Lr: 0.000300\n",
            "2020-07-12 20:55:27,832 Epoch   8: total training loss 1702.89\n",
            "2020-07-12 20:55:27,833 EPOCH 9\n",
            "2020-07-12 20:55:37,475 Epoch   9 Step:     4700 Batch Loss:     1.902806 Tokens per Sec:    11243, Lr: 0.000300\n",
            "2020-07-12 20:55:56,021 Epoch   9 Step:     4800 Batch Loss:     3.366707 Tokens per Sec:    11431, Lr: 0.000300\n",
            "2020-07-12 20:56:14,599 Epoch   9 Step:     4900 Batch Loss:     2.641436 Tokens per Sec:    11356, Lr: 0.000300\n",
            "2020-07-12 20:56:33,118 Epoch   9 Step:     5000 Batch Loss:     1.813956 Tokens per Sec:    11200, Lr: 0.000300\n",
            "2020-07-12 20:56:59,654 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 20:56:59,654 Saving new checkpoint.\n",
            "2020-07-12 20:57:00,799 Example #0\n",
            "2020-07-12 20:57:00,800 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 20:57:00,800 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 20:57:00,800 \tHypothesis: Tinali kufufuza za dziko lathu limene tinalamula anthu ambili .\n",
            "2020-07-12 20:57:00,800 Example #1\n",
            "2020-07-12 20:57:00,801 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 20:57:00,801 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 20:57:00,801 \tHypothesis: Iye angacite zimenezo kuti akakhale ndi zaka zambili .\n",
            "2020-07-12 20:57:00,801 Example #2\n",
            "2020-07-12 20:57:00,802 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 20:57:00,802 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 20:57:00,802 \tHypothesis: Kodi Mose anaonetsa bwanji kuti anali ndi mau a Paulo ?\n",
            "2020-07-12 20:57:00,802 Example #3\n",
            "2020-07-12 20:57:00,802 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 20:57:00,803 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 20:57:00,803 \tHypothesis: Cikondi Cikondi Cikondi Cikondi Cikondi Cake Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cikondi Cake\n",
            "2020-07-12 20:57:00,803 Validation result (greedy) at epoch   9, step     5000: bleu:   6.91, loss: 68773.7266, ppl:  16.0213, duration: 27.6843s\n",
            "2020-07-12 20:57:19,792 Epoch   9 Step:     5100 Batch Loss:     3.378844 Tokens per Sec:    10709, Lr: 0.000300\n",
            "2020-07-12 20:57:38,438 Epoch   9 Step:     5200 Batch Loss:     3.053119 Tokens per Sec:    11093, Lr: 0.000300\n",
            "2020-07-12 20:57:43,714 Epoch   9: total training loss 1654.79\n",
            "2020-07-12 20:57:43,715 EPOCH 10\n",
            "2020-07-12 20:57:56,691 Epoch  10 Step:     5300 Batch Loss:     2.894244 Tokens per Sec:    11050, Lr: 0.000300\n",
            "2020-07-12 20:58:14,962 Epoch  10 Step:     5400 Batch Loss:     3.201298 Tokens per Sec:    11192, Lr: 0.000300\n",
            "2020-07-12 20:58:33,363 Epoch  10 Step:     5500 Batch Loss:     3.223227 Tokens per Sec:    11257, Lr: 0.000300\n",
            "2020-07-12 20:58:51,574 Epoch  10 Step:     5600 Batch Loss:     2.737585 Tokens per Sec:    11035, Lr: 0.000300\n",
            "2020-07-12 20:59:09,738 Epoch  10 Step:     5700 Batch Loss:     2.743144 Tokens per Sec:    11207, Lr: 0.000300\n",
            "2020-07-12 20:59:28,488 Epoch  10 Step:     5800 Batch Loss:     2.704981 Tokens per Sec:    11613, Lr: 0.000300\n",
            "2020-07-12 20:59:31,146 Epoch  10: total training loss 1624.04\n",
            "2020-07-12 20:59:31,146 EPOCH 11\n",
            "2020-07-12 20:59:47,229 Epoch  11 Step:     5900 Batch Loss:     2.886471 Tokens per Sec:    11408, Lr: 0.000300\n",
            "2020-07-12 21:00:05,688 Epoch  11 Step:     6000 Batch Loss:     2.807448 Tokens per Sec:    11172, Lr: 0.000300\n",
            "2020-07-12 21:00:38,757 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:00:38,758 Saving new checkpoint.\n",
            "2020-07-12 21:00:39,876 Example #0\n",
            "2020-07-12 21:00:39,876 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:00:39,877 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:00:39,877 \tHypothesis: Mogwilizana ndi anthu amene tinali kukumana nao padziko lapansi , tinayamba kukumana ndi mavuto ambili\n",
            "2020-07-12 21:00:39,877 Example #1\n",
            "2020-07-12 21:00:39,877 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:00:39,877 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:00:39,878 \tHypothesis: Iye angacite bwino kuona mmene anali kucitila zinthu zambili , ngakhale kuti anali ndi zaka zambili .\n",
            "2020-07-12 21:00:39,878 Example #2\n",
            "2020-07-12 21:00:39,878 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:00:39,878 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:00:39,878 \tHypothesis: Kodi Mose anacita ciani pa tsiku la Paulo la 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:00:39,878 Example #3\n",
            "2020-07-12 21:00:39,879 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:00:39,879 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:00:39,879 \tHypothesis: Mmene Mumacita Mkulu Wabwino , July\n",
            "2020-07-12 21:00:39,879 Validation result (greedy) at epoch  11, step     6000: bleu:   8.22, loss: 66082.8594, ppl:  14.3735, duration: 34.1909s\n",
            "2020-07-12 21:00:58,498 Epoch  11 Step:     6100 Batch Loss:     2.824265 Tokens per Sec:    11075, Lr: 0.000300\n",
            "2020-07-12 21:01:17,161 Epoch  11 Step:     6200 Batch Loss:     2.993033 Tokens per Sec:    11128, Lr: 0.000300\n",
            "2020-07-12 21:01:35,768 Epoch  11 Step:     6300 Batch Loss:     2.654554 Tokens per Sec:    11077, Lr: 0.000300\n",
            "2020-07-12 21:01:53,341 Epoch  11: total training loss 1568.96\n",
            "2020-07-12 21:01:53,342 EPOCH 12\n",
            "2020-07-12 21:01:54,486 Epoch  12 Step:     6400 Batch Loss:     2.727532 Tokens per Sec:     9916, Lr: 0.000300\n",
            "2020-07-12 21:02:13,003 Epoch  12 Step:     6500 Batch Loss:     2.721638 Tokens per Sec:    11120, Lr: 0.000300\n",
            "2020-07-12 21:02:31,610 Epoch  12 Step:     6600 Batch Loss:     2.611042 Tokens per Sec:    11272, Lr: 0.000300\n",
            "2020-07-12 21:02:50,016 Epoch  12 Step:     6700 Batch Loss:     3.039977 Tokens per Sec:    11127, Lr: 0.000300\n",
            "2020-07-12 21:03:08,468 Epoch  12 Step:     6800 Batch Loss:     2.798577 Tokens per Sec:    11329, Lr: 0.000300\n",
            "2020-07-12 21:03:27,082 Epoch  12 Step:     6900 Batch Loss:     2.618927 Tokens per Sec:    11387, Lr: 0.000300\n",
            "2020-07-12 21:03:40,650 Epoch  12: total training loss 1529.47\n",
            "2020-07-12 21:03:40,651 EPOCH 13\n",
            "2020-07-12 21:03:45,869 Epoch  13 Step:     7000 Batch Loss:     2.779525 Tokens per Sec:    11528, Lr: 0.000300\n",
            "2020-07-12 21:04:08,411 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:04:08,412 Saving new checkpoint.\n",
            "2020-07-12 21:04:09,588 Example #0\n",
            "2020-07-12 21:04:09,588 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:04:09,589 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:04:09,589 \tHypothesis: Tinali kudya zakudya zocepa kuti tikwanitse anthu ambili m’dzikoli\n",
            "2020-07-12 21:04:09,589 Example #1\n",
            "2020-07-12 21:04:09,589 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:04:09,590 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:04:09,590 \tHypothesis: Iye angacite zimenezi mwa kucita zinthu zimene zinacitika m’nthawi ya atumwi .\n",
            "2020-07-12 21:04:09,590 Example #2\n",
            "2020-07-12 21:04:09,591 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:04:09,591 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:04:09,591 \tHypothesis: Kodi Mose anacita ciani pa nthawi ya atumwi ?\n",
            "2020-07-12 21:04:09,591 Example #3\n",
            "2020-07-12 21:04:09,591 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:04:09,592 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:04:09,592 \tHypothesis: Kudziŵa Coonadi Conse Conse Conse Coonadi Conse , July\n",
            "2020-07-12 21:04:09,592 Validation result (greedy) at epoch  13, step     7000: bleu:   9.08, loss: 63526.4961, ppl:  12.9653, duration: 23.7224s\n",
            "2020-07-12 21:04:28,101 Epoch  13 Step:     7100 Batch Loss:     2.530882 Tokens per Sec:    11105, Lr: 0.000300\n",
            "2020-07-12 21:04:46,627 Epoch  13 Step:     7200 Batch Loss:     2.307031 Tokens per Sec:    11074, Lr: 0.000300\n",
            "2020-07-12 21:05:04,913 Epoch  13 Step:     7300 Batch Loss:     2.874648 Tokens per Sec:    11324, Lr: 0.000300\n",
            "2020-07-12 21:05:23,442 Epoch  13 Step:     7400 Batch Loss:     2.225077 Tokens per Sec:    10968, Lr: 0.000300\n",
            "2020-07-12 21:05:41,946 Epoch  13 Step:     7500 Batch Loss:     2.328564 Tokens per Sec:    11249, Lr: 0.000300\n",
            "2020-07-12 21:05:52,458 Epoch  13: total training loss 1513.63\n",
            "2020-07-12 21:05:52,458 EPOCH 14\n",
            "2020-07-12 21:06:00,668 Epoch  14 Step:     7600 Batch Loss:     2.770868 Tokens per Sec:    11209, Lr: 0.000300\n",
            "2020-07-12 21:06:19,075 Epoch  14 Step:     7700 Batch Loss:     2.845640 Tokens per Sec:    11402, Lr: 0.000300\n",
            "2020-07-12 21:06:37,491 Epoch  14 Step:     7800 Batch Loss:     2.488195 Tokens per Sec:    11250, Lr: 0.000300\n",
            "2020-07-12 21:06:55,905 Epoch  14 Step:     7900 Batch Loss:     2.452046 Tokens per Sec:    11275, Lr: 0.000300\n",
            "2020-07-12 21:07:14,267 Epoch  14 Step:     8000 Batch Loss:     2.044750 Tokens per Sec:    11336, Lr: 0.000300\n",
            "2020-07-12 21:07:32,905 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:07:32,905 Saving new checkpoint.\n",
            "2020-07-12 21:07:34,103 Example #0\n",
            "2020-07-12 21:07:34,104 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:07:34,104 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:07:34,104 \tHypothesis: Anthu athu amene anatilamula kuti tikasokoneze dziko lonse\n",
            "2020-07-12 21:07:34,104 Example #1\n",
            "2020-07-12 21:07:34,105 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:07:34,105 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:07:34,105 \tHypothesis: Iye angacite zimenezo mwa kucita zinthu zimene zinacitika kwa zaka zambili .\n",
            "2020-07-12 21:07:34,105 Example #2\n",
            "2020-07-12 21:07:34,105 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:07:34,106 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:07:34,106 \tHypothesis: Kodi Mose anacita ciani pa lemba la 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:07:34,106 Example #3\n",
            "2020-07-12 21:07:34,106 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:07:34,107 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:07:34,107 \tHypothesis: Kuphunzila Cikondi Catsopano Catsopano Conse Cimalimba , July\n",
            "2020-07-12 21:07:34,107 Validation result (greedy) at epoch  14, step     8000: bleu:   9.82, loss: 61911.1172, ppl:  12.1475, duration: 19.8398s\n",
            "2020-07-12 21:07:52,888 Epoch  14 Step:     8100 Batch Loss:     1.988333 Tokens per Sec:    10812, Lr: 0.000300\n",
            "2020-07-12 21:07:59,991 Epoch  14: total training loss 1482.87\n",
            "2020-07-12 21:07:59,991 EPOCH 15\n",
            "2020-07-12 21:08:11,604 Epoch  15 Step:     8200 Batch Loss:     2.349521 Tokens per Sec:    11173, Lr: 0.000300\n",
            "2020-07-12 21:08:30,140 Epoch  15 Step:     8300 Batch Loss:     2.845519 Tokens per Sec:    11171, Lr: 0.000300\n",
            "2020-07-12 21:08:48,724 Epoch  15 Step:     8400 Batch Loss:     2.336199 Tokens per Sec:    11297, Lr: 0.000300\n",
            "2020-07-12 21:09:07,205 Epoch  15 Step:     8500 Batch Loss:     2.768113 Tokens per Sec:    11375, Lr: 0.000300\n",
            "2020-07-12 21:09:25,565 Epoch  15 Step:     8600 Batch Loss:     2.474854 Tokens per Sec:    10940, Lr: 0.000300\n",
            "2020-07-12 21:09:43,770 Epoch  15 Step:     8700 Batch Loss:     2.519118 Tokens per Sec:    11164, Lr: 0.000300\n",
            "2020-07-12 21:09:47,738 Epoch  15: total training loss 1457.46\n",
            "2020-07-12 21:09:47,739 EPOCH 16\n",
            "2020-07-12 21:10:02,372 Epoch  16 Step:     8800 Batch Loss:     1.913652 Tokens per Sec:    11166, Lr: 0.000300\n",
            "2020-07-12 21:10:20,707 Epoch  16 Step:     8900 Batch Loss:     2.514320 Tokens per Sec:    11140, Lr: 0.000300\n",
            "2020-07-12 21:10:39,333 Epoch  16 Step:     9000 Batch Loss:     1.852291 Tokens per Sec:    11105, Lr: 0.000300\n",
            "2020-07-12 21:11:06,572 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:11:06,573 Saving new checkpoint.\n",
            "2020-07-12 21:11:08,349 Example #0\n",
            "2020-07-12 21:11:08,349 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:11:08,350 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:11:08,350 \tHypothesis: Tinali kugaŵila ku mbali ya anthu amene anatilimbikitsa kuti tikapulumuke m’dziko lathu\n",
            "2020-07-12 21:11:08,350 Example #1\n",
            "2020-07-12 21:11:08,350 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:11:08,350 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:11:08,350 \tHypothesis: Iye akanakhala ndi maganizo ake pa zinthu zimene anacita , ngakhale kuti anali kucita zaka zambili .\n",
            "2020-07-12 21:11:08,351 Example #2\n",
            "2020-07-12 21:11:08,351 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:11:08,351 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:11:08,351 \tHypothesis: Kodi Mose anali kuganizila ciani ponena za mau a Paulo a m’mau a Paulo a pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:11:08,351 Example #3\n",
            "2020-07-12 21:11:08,352 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:11:08,352 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:11:08,352 \tHypothesis: Kukhulupilila Moyo Wosaoneka , July\n",
            "2020-07-12 21:11:08,352 Validation result (greedy) at epoch  16, step     9000: bleu:  10.86, loss: 60281.3047, ppl:  11.3746, duration: 29.0181s\n",
            "2020-07-12 21:11:26,775 Epoch  16 Step:     9100 Batch Loss:     2.761579 Tokens per Sec:    11098, Lr: 0.000300\n",
            "2020-07-12 21:11:45,171 Epoch  16 Step:     9200 Batch Loss:     2.247161 Tokens per Sec:    11195, Lr: 0.000300\n",
            "2020-07-12 21:12:03,743 Epoch  16 Step:     9300 Batch Loss:     2.698262 Tokens per Sec:    11143, Lr: 0.000300\n",
            "2020-07-12 21:12:05,049 Epoch  16: total training loss 1439.43\n",
            "2020-07-12 21:12:05,049 EPOCH 17\n",
            "2020-07-12 21:12:22,048 Epoch  17 Step:     9400 Batch Loss:     2.614497 Tokens per Sec:    10893, Lr: 0.000300\n",
            "2020-07-12 21:12:40,624 Epoch  17 Step:     9500 Batch Loss:     2.584436 Tokens per Sec:    11356, Lr: 0.000300\n",
            "2020-07-12 21:12:59,127 Epoch  17 Step:     9600 Batch Loss:     2.364741 Tokens per Sec:    11265, Lr: 0.000300\n",
            "2020-07-12 21:13:17,584 Epoch  17 Step:     9700 Batch Loss:     2.226366 Tokens per Sec:    11219, Lr: 0.000300\n",
            "2020-07-12 21:13:36,308 Epoch  17 Step:     9800 Batch Loss:     2.059721 Tokens per Sec:    11340, Lr: 0.000300\n",
            "2020-07-12 21:13:52,792 Epoch  17: total training loss 1409.13\n",
            "2020-07-12 21:13:52,793 EPOCH 18\n",
            "2020-07-12 21:13:54,731 Epoch  18 Step:     9900 Batch Loss:     2.092695 Tokens per Sec:    11694, Lr: 0.000300\n",
            "2020-07-12 21:14:13,348 Epoch  18 Step:    10000 Batch Loss:     2.355742 Tokens per Sec:    11207, Lr: 0.000300\n",
            "2020-07-12 21:14:46,358 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:14:46,358 Saving new checkpoint.\n",
            "2020-07-12 21:14:47,559 Example #0\n",
            "2020-07-12 21:14:47,560 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:14:47,560 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:14:47,560 \tHypothesis: Tinali kufunitsitsa kutengako mbali m’madela ambili m’dziko lathu\n",
            "2020-07-12 21:14:47,560 Example #1\n",
            "2020-07-12 21:14:47,560 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:14:47,561 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:14:47,561 \tHypothesis: Iye akanaika maganizo ake pa zinthu zina zimene anali kucita , ngakhale kuti anali kucita zinthu zambili .\n",
            "2020-07-12 21:14:47,561 Example #2\n",
            "2020-07-12 21:14:47,561 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:14:47,561 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:14:47,561 \tHypothesis: Kodi zocitika za Mose zinathandiza bwanji Timoteyo kukhala na mau a Paulo pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:14:47,562 Example #3\n",
            "2020-07-12 21:14:47,562 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:14:47,562 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:14:47,562 \tHypothesis: Kugwila Nchito Yopambana Kupilila Kupilila , July\n",
            "2020-07-12 21:14:47,562 Validation result (greedy) at epoch  18, step    10000: bleu:  11.17, loss: 58961.6133, ppl:  10.7850, duration: 34.2140s\n",
            "2020-07-12 21:15:06,506 Epoch  18 Step:    10100 Batch Loss:     2.428898 Tokens per Sec:    11052, Lr: 0.000300\n",
            "2020-07-12 21:15:25,191 Epoch  18 Step:    10200 Batch Loss:     2.221598 Tokens per Sec:    11326, Lr: 0.000300\n",
            "2020-07-12 21:15:43,883 Epoch  18 Step:    10300 Batch Loss:     2.580553 Tokens per Sec:    11107, Lr: 0.000300\n",
            "2020-07-12 21:16:02,403 Epoch  18 Step:    10400 Batch Loss:     2.540907 Tokens per Sec:    11155, Lr: 0.000300\n",
            "2020-07-12 21:16:15,084 Epoch  18: total training loss 1378.97\n",
            "2020-07-12 21:16:15,084 EPOCH 19\n",
            "2020-07-12 21:16:20,903 Epoch  19 Step:    10500 Batch Loss:     1.792645 Tokens per Sec:    10919, Lr: 0.000300\n",
            "2020-07-12 21:16:39,369 Epoch  19 Step:    10600 Batch Loss:     2.224898 Tokens per Sec:    11440, Lr: 0.000300\n",
            "2020-07-12 21:16:57,628 Epoch  19 Step:    10700 Batch Loss:     1.972942 Tokens per Sec:    11074, Lr: 0.000300\n",
            "2020-07-12 21:17:16,274 Epoch  19 Step:    10800 Batch Loss:     2.240098 Tokens per Sec:    11328, Lr: 0.000300\n",
            "2020-07-12 21:17:34,932 Epoch  19 Step:    10900 Batch Loss:     1.967205 Tokens per Sec:    11344, Lr: 0.000300\n",
            "2020-07-12 21:17:53,616 Epoch  19 Step:    11000 Batch Loss:     2.066128 Tokens per Sec:    11285, Lr: 0.000300\n",
            "2020-07-12 21:18:15,331 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:18:15,331 Saving new checkpoint.\n",
            "2020-07-12 21:18:16,431 Example #0\n",
            "2020-07-12 21:18:16,432 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:18:16,432 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:18:16,432 \tHypothesis: Pali pano , tinayamba kusamalila dziko lonse\n",
            "2020-07-12 21:18:16,432 Example #1\n",
            "2020-07-12 21:18:16,433 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:18:16,433 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:18:16,433 \tHypothesis: Iye angafune kuti akambilane za zinthu zimene zinacitika m’zaka zambili , ngakhale kuti anali ndi zaka zambili .\n",
            "2020-07-12 21:18:16,433 Example #2\n",
            "2020-07-12 21:18:16,434 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:18:16,434 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:18:16,434 \tHypothesis: Kodi Mose anali kuganizila ciani pa lemba la 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:18:16,434 Example #3\n",
            "2020-07-12 21:18:16,435 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:18:16,435 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:18:16,435 \tHypothesis: Kucokela kwa Pabanja , July\n",
            "2020-07-12 21:18:16,435 Validation result (greedy) at epoch  19, step    11000: bleu:  11.81, loss: 57576.3789, ppl:  10.1989, duration: 22.8182s\n",
            "2020-07-12 21:18:25,562 Epoch  19: total training loss 1364.70\n",
            "2020-07-12 21:18:25,562 EPOCH 20\n",
            "2020-07-12 21:18:34,940 Epoch  20 Step:    11100 Batch Loss:     2.185124 Tokens per Sec:    11070, Lr: 0.000300\n",
            "2020-07-12 21:18:53,094 Epoch  20 Step:    11200 Batch Loss:     2.498385 Tokens per Sec:    11016, Lr: 0.000300\n",
            "2020-07-12 21:19:11,695 Epoch  20 Step:    11300 Batch Loss:     2.564159 Tokens per Sec:    11289, Lr: 0.000300\n",
            "2020-07-12 21:19:30,054 Epoch  20 Step:    11400 Batch Loss:     2.303161 Tokens per Sec:    11185, Lr: 0.000300\n",
            "2020-07-12 21:19:48,614 Epoch  20 Step:    11500 Batch Loss:     2.259850 Tokens per Sec:    11408, Lr: 0.000300\n",
            "2020-07-12 21:20:06,981 Epoch  20 Step:    11600 Batch Loss:     2.186822 Tokens per Sec:    11156, Lr: 0.000300\n",
            "2020-07-12 21:20:13,477 Epoch  20: total training loss 1357.13\n",
            "2020-07-12 21:20:13,478 EPOCH 21\n",
            "2020-07-12 21:20:25,606 Epoch  21 Step:    11700 Batch Loss:     2.087318 Tokens per Sec:    11080, Lr: 0.000300\n",
            "2020-07-12 21:20:44,269 Epoch  21 Step:    11800 Batch Loss:     1.906124 Tokens per Sec:    11319, Lr: 0.000300\n",
            "2020-07-12 21:21:02,649 Epoch  21 Step:    11900 Batch Loss:     2.099954 Tokens per Sec:    11268, Lr: 0.000300\n",
            "2020-07-12 21:21:21,091 Epoch  21 Step:    12000 Batch Loss:     2.294059 Tokens per Sec:    11470, Lr: 0.000300\n",
            "2020-07-12 21:21:52,392 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:21:52,393 Saving new checkpoint.\n",
            "2020-07-12 21:21:53,628 Example #0\n",
            "2020-07-12 21:21:53,629 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:21:53,629 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:21:53,629 \tHypothesis: Tinali kugona katundu wathu pa malo athu amene tinali kukumana nao m’dziko lonse\n",
            "2020-07-12 21:21:53,629 Example #1\n",
            "2020-07-12 21:21:53,630 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:21:53,630 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:21:53,630 \tHypothesis: Iye angafunike kucita zinthu zimene anacita kwa zaka zambili .\n",
            "2020-07-12 21:21:53,630 Example #2\n",
            "2020-07-12 21:21:53,630 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:21:53,630 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:21:53,631 \tHypothesis: Kodi zocitika za Mose zinasonkhezela mau a Paulo pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:21:53,631 Example #3\n",
            "2020-07-12 21:21:53,631 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:21:53,631 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:21:53,631 \tHypothesis: Tili na Ciyembekezo Copambana , July\n",
            "2020-07-12 21:21:53,632 Validation result (greedy) at epoch  21, step    12000: bleu:  12.65, loss: 56646.6211, ppl:   9.8236, duration: 32.5401s\n",
            "2020-07-12 21:22:12,422 Epoch  21 Step:    12100 Batch Loss:     2.145493 Tokens per Sec:    11082, Lr: 0.000300\n",
            "2020-07-12 21:22:30,791 Epoch  21 Step:    12200 Batch Loss:     2.475222 Tokens per Sec:    11296, Lr: 0.000300\n",
            "2020-07-12 21:22:33,189 Epoch  21: total training loss 1322.48\n",
            "2020-07-12 21:22:33,190 EPOCH 22\n",
            "2020-07-12 21:22:49,387 Epoch  22 Step:    12300 Batch Loss:     2.111602 Tokens per Sec:    11117, Lr: 0.000300\n",
            "2020-07-12 21:23:07,757 Epoch  22 Step:    12400 Batch Loss:     2.236841 Tokens per Sec:    11236, Lr: 0.000300\n",
            "2020-07-12 21:23:26,279 Epoch  22 Step:    12500 Batch Loss:     2.356989 Tokens per Sec:    11113, Lr: 0.000300\n",
            "2020-07-12 21:23:44,949 Epoch  22 Step:    12600 Batch Loss:     2.198585 Tokens per Sec:    11457, Lr: 0.000300\n",
            "2020-07-12 21:24:03,276 Epoch  22 Step:    12700 Batch Loss:     2.277119 Tokens per Sec:    11271, Lr: 0.000300\n",
            "2020-07-12 21:24:20,559 Epoch  22: total training loss 1309.67\n",
            "2020-07-12 21:24:20,559 EPOCH 23\n",
            "2020-07-12 21:24:21,723 Epoch  23 Step:    12800 Batch Loss:     2.211040 Tokens per Sec:    11522, Lr: 0.000300\n",
            "2020-07-12 21:24:39,921 Epoch  23 Step:    12900 Batch Loss:     2.081254 Tokens per Sec:    10983, Lr: 0.000300\n",
            "2020-07-12 21:24:58,378 Epoch  23 Step:    13000 Batch Loss:     2.620756 Tokens per Sec:    11204, Lr: 0.000300\n",
            "2020-07-12 21:25:24,313 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:25:24,314 Saving new checkpoint.\n",
            "2020-07-12 21:25:25,485 Example #0\n",
            "2020-07-12 21:25:25,486 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:25:25,486 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:25:25,486 \tHypothesis: Anthu athu anali kutilimbikitsa kwambili padziko lonse lapansi\n",
            "2020-07-12 21:25:25,487 Example #1\n",
            "2020-07-12 21:25:25,487 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:25:25,487 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:25:25,487 \tHypothesis: Iye angaganize kuti anali ndi vuto laciwelewele , ngakhale kuti zaka zambili zapitazo .\n",
            "2020-07-12 21:25:25,487 Example #2\n",
            "2020-07-12 21:25:25,488 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:25:25,488 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:25:25,488 \tHypothesis: Kodi zocitika za Mose zinathandiza bwanji masiku ano ?\n",
            "2020-07-12 21:25:25,488 Example #3\n",
            "2020-07-12 21:25:25,488 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:25:25,489 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:25:25,489 \tHypothesis: Ndani Kuti Kuti Kuti Kuti Mumulile Uthenga Wabwino , July\n",
            "2020-07-12 21:25:25,489 Validation result (greedy) at epoch  23, step    13000: bleu:  13.00, loss: 55712.6133, ppl:   9.4604, duration: 27.1106s\n",
            "2020-07-12 21:25:44,251 Epoch  23 Step:    13100 Batch Loss:     2.018826 Tokens per Sec:    11284, Lr: 0.000300\n",
            "2020-07-12 21:26:02,419 Epoch  23 Step:    13200 Batch Loss:     2.134311 Tokens per Sec:    11186, Lr: 0.000300\n",
            "2020-07-12 21:26:21,019 Epoch  23 Step:    13300 Batch Loss:     2.013390 Tokens per Sec:    11224, Lr: 0.000300\n",
            "2020-07-12 21:26:35,650 Epoch  23: total training loss 1304.75\n",
            "2020-07-12 21:26:35,651 EPOCH 24\n",
            "2020-07-12 21:26:39,568 Epoch  24 Step:    13400 Batch Loss:     1.963058 Tokens per Sec:    10727, Lr: 0.000300\n",
            "2020-07-12 21:26:58,041 Epoch  24 Step:    13500 Batch Loss:     2.269552 Tokens per Sec:    11266, Lr: 0.000300\n",
            "2020-07-12 21:27:16,574 Epoch  24 Step:    13600 Batch Loss:     1.387344 Tokens per Sec:    11366, Lr: 0.000300\n",
            "2020-07-12 21:27:35,089 Epoch  24 Step:    13700 Batch Loss:     1.838774 Tokens per Sec:    11199, Lr: 0.000300\n",
            "2020-07-12 21:27:53,492 Epoch  24 Step:    13800 Batch Loss:     2.099367 Tokens per Sec:    11160, Lr: 0.000300\n",
            "2020-07-12 21:28:11,929 Epoch  24 Step:    13900 Batch Loss:     2.407192 Tokens per Sec:    11325, Lr: 0.000300\n",
            "2020-07-12 21:28:23,198 Epoch  24: total training loss 1284.61\n",
            "2020-07-12 21:28:23,198 EPOCH 25\n",
            "2020-07-12 21:28:30,374 Epoch  25 Step:    14000 Batch Loss:     2.420966 Tokens per Sec:    11092, Lr: 0.000300\n",
            "2020-07-12 21:28:59,782 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:28:59,782 Saving new checkpoint.\n",
            "2020-07-12 21:29:01,000 Example #0\n",
            "2020-07-12 21:29:01,001 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:29:01,001 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:29:01,001 \tHypothesis: Tinali kulalikila m’madela athu amene tinali kutilengamo mbali m’madela akutali\n",
            "2020-07-12 21:29:01,002 Example #1\n",
            "2020-07-12 21:29:01,002 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:29:01,002 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:29:01,003 \tHypothesis: Iye angafune kuti aziimba mlandu cifukwa ca zimene anacita kwa zaka zambili .\n",
            "2020-07-12 21:29:01,003 Example #2\n",
            "2020-07-12 21:29:01,003 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:29:01,003 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:29:01,003 \tHypothesis: Kodi zimene Mose anacita pa zocitika za m’nthawi ya Mose zimasonkhezela mau a Paulo pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:29:01,004 Example #3\n",
            "2020-07-12 21:29:01,004 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:29:01,004 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:29:01,004 \tHypothesis: Tizisangalala Kudziŵa Coonadi Cimene Cimapatsa , July\n",
            "2020-07-12 21:29:01,005 Validation result (greedy) at epoch  25, step    14000: bleu:  13.34, loss: 54857.1328, ppl:   9.1395, duration: 30.6306s\n",
            "2020-07-12 21:29:19,687 Epoch  25 Step:    14100 Batch Loss:     2.246745 Tokens per Sec:    11063, Lr: 0.000300\n",
            "2020-07-12 21:29:38,428 Epoch  25 Step:    14200 Batch Loss:     2.616163 Tokens per Sec:    11016, Lr: 0.000300\n",
            "2020-07-12 21:29:57,088 Epoch  25 Step:    14300 Batch Loss:     2.052552 Tokens per Sec:    11069, Lr: 0.000300\n",
            "2020-07-12 21:30:15,744 Epoch  25 Step:    14400 Batch Loss:     2.588664 Tokens per Sec:    11401, Lr: 0.000300\n",
            "2020-07-12 21:30:34,159 Epoch  25 Step:    14500 Batch Loss:     2.537948 Tokens per Sec:    11180, Lr: 0.000300\n",
            "2020-07-12 21:30:41,916 Epoch  25: total training loss 1265.02\n",
            "2020-07-12 21:30:41,916 EPOCH 26\n",
            "2020-07-12 21:30:52,745 Epoch  26 Step:    14600 Batch Loss:     2.163159 Tokens per Sec:    11315, Lr: 0.000300\n",
            "2020-07-12 21:31:11,302 Epoch  26 Step:    14700 Batch Loss:     2.121996 Tokens per Sec:    11139, Lr: 0.000300\n",
            "2020-07-12 21:31:29,805 Epoch  26 Step:    14800 Batch Loss:     2.149545 Tokens per Sec:    11109, Lr: 0.000300\n",
            "2020-07-12 21:31:48,487 Epoch  26 Step:    14900 Batch Loss:     2.132342 Tokens per Sec:    11199, Lr: 0.000300\n",
            "2020-07-12 21:32:07,100 Epoch  26 Step:    15000 Batch Loss:     2.116457 Tokens per Sec:    11188, Lr: 0.000300\n",
            "2020-07-12 21:32:29,659 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:32:29,659 Saving new checkpoint.\n",
            "2020-07-12 21:32:30,833 Example #0\n",
            "2020-07-12 21:32:30,834 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:32:30,834 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:32:30,834 \tHypothesis: Tinali kugula zakudya za anthu amene tinali kutitenga dziko lapansi\n",
            "2020-07-12 21:32:30,835 Example #1\n",
            "2020-07-12 21:32:30,836 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:32:30,836 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:32:30,836 \tHypothesis: Iye anali ndi maganizo olakwika amene anali nao kale , ngakhale zaka zambili .\n",
            "2020-07-12 21:32:30,837 Example #2\n",
            "2020-07-12 21:32:30,837 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:32:30,837 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:32:30,837 \tHypothesis: Kodi mau a Mose a m’nthawi ya Mose anali kuimila ciani ?\n",
            "2020-07-12 21:32:30,837 Example #3\n",
            "2020-07-12 21:32:30,838 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:32:30,838 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:32:30,838 \tHypothesis: Tili ndi Ciyembekezo Cabwino , July\n",
            "2020-07-12 21:32:30,838 Validation result (greedy) at epoch  26, step    15000: bleu:  13.85, loss: 53885.8867, ppl:   8.7884, duration: 23.7381s\n",
            "2020-07-12 21:32:49,432 Epoch  26 Step:    15100 Batch Loss:     2.359765 Tokens per Sec:    11129, Lr: 0.000300\n",
            "2020-07-12 21:32:53,707 Epoch  26: total training loss 1251.62\n",
            "2020-07-12 21:32:53,707 EPOCH 27\n",
            "2020-07-12 21:33:07,862 Epoch  27 Step:    15200 Batch Loss:     1.612871 Tokens per Sec:    11248, Lr: 0.000300\n",
            "2020-07-12 21:33:26,770 Epoch  27 Step:    15300 Batch Loss:     2.410092 Tokens per Sec:    11272, Lr: 0.000300\n",
            "2020-07-12 21:33:45,135 Epoch  27 Step:    15400 Batch Loss:     2.515933 Tokens per Sec:    11132, Lr: 0.000300\n",
            "2020-07-12 21:34:03,330 Epoch  27 Step:    15500 Batch Loss:     2.067173 Tokens per Sec:    11112, Lr: 0.000300\n",
            "2020-07-12 21:34:21,547 Epoch  27 Step:    15600 Batch Loss:     2.100986 Tokens per Sec:    11403, Lr: 0.000300\n",
            "2020-07-12 21:34:39,988 Epoch  27 Step:    15700 Batch Loss:     2.350737 Tokens per Sec:    11228, Lr: 0.000300\n",
            "2020-07-12 21:34:41,111 Epoch  27: total training loss 1242.77\n",
            "2020-07-12 21:34:41,112 EPOCH 28\n",
            "2020-07-12 21:34:58,730 Epoch  28 Step:    15800 Batch Loss:     1.252520 Tokens per Sec:    11290, Lr: 0.000300\n",
            "2020-07-12 21:35:17,218 Epoch  28 Step:    15900 Batch Loss:     2.261224 Tokens per Sec:    11266, Lr: 0.000300\n",
            "2020-07-12 21:35:35,839 Epoch  28 Step:    16000 Batch Loss:     2.414489 Tokens per Sec:    11158, Lr: 0.000300\n",
            "2020-07-12 21:36:04,598 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:36:04,599 Saving new checkpoint.\n",
            "2020-07-12 21:36:05,824 Example #0\n",
            "2020-07-12 21:36:05,825 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:36:05,825 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:36:05,825 \tHypothesis: Tinali kusiyana kwambili ndi anthu a m’dzikoli\n",
            "2020-07-12 21:36:05,825 Example #1\n",
            "2020-07-12 21:36:05,826 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:36:05,826 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:36:05,826 \tHypothesis: Iye angaganize kuti anali ndi vuto laciwelewele , ndipo anali ndi zaka zambili .\n",
            "2020-07-12 21:36:05,826 Example #2\n",
            "2020-07-12 21:36:05,827 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:36:05,827 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:36:05,827 \tHypothesis: Kodi zocitika za m’nthawi ya Mose zinasonyeza ciani pa mau a Paulo a pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:36:05,827 Example #3\n",
            "2020-07-12 21:36:05,828 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:36:05,828 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:36:05,828 \tHypothesis: Tili ndi Ciyembekezo Cimene Cimene Cimatipatsa , July\n",
            "2020-07-12 21:36:05,828 Validation result (greedy) at epoch  28, step    16000: bleu:  14.68, loss: 53204.4258, ppl:   8.5501, duration: 29.9881s\n",
            "2020-07-12 21:36:25,203 Epoch  28 Step:    16100 Batch Loss:     2.462816 Tokens per Sec:    10942, Lr: 0.000300\n",
            "2020-07-12 21:36:43,579 Epoch  28 Step:    16200 Batch Loss:     2.299822 Tokens per Sec:    11067, Lr: 0.000300\n",
            "2020-07-12 21:36:59,264 Epoch  28: total training loss 1222.03\n",
            "2020-07-12 21:36:59,264 EPOCH 29\n",
            "2020-07-12 21:37:02,248 Epoch  29 Step:    16300 Batch Loss:     1.654314 Tokens per Sec:    10759, Lr: 0.000300\n",
            "2020-07-12 21:37:20,690 Epoch  29 Step:    16400 Batch Loss:     2.241484 Tokens per Sec:    11366, Lr: 0.000300\n",
            "2020-07-12 21:37:39,530 Epoch  29 Step:    16500 Batch Loss:     2.279921 Tokens per Sec:    10965, Lr: 0.000300\n",
            "2020-07-12 21:37:58,074 Epoch  29 Step:    16600 Batch Loss:     2.222358 Tokens per Sec:    11352, Lr: 0.000300\n",
            "2020-07-12 21:38:16,390 Epoch  29 Step:    16700 Batch Loss:     2.419949 Tokens per Sec:    11164, Lr: 0.000300\n",
            "2020-07-12 21:38:34,734 Epoch  29 Step:    16800 Batch Loss:     2.223499 Tokens per Sec:    11140, Lr: 0.000300\n",
            "2020-07-12 21:38:47,135 Epoch  29: total training loss 1219.28\n",
            "2020-07-12 21:38:47,135 EPOCH 30\n",
            "2020-07-12 21:38:53,392 Epoch  30 Step:    16900 Batch Loss:     1.924732 Tokens per Sec:    11642, Lr: 0.000300\n",
            "2020-07-12 21:39:11,811 Epoch  30 Step:    17000 Batch Loss:     2.250193 Tokens per Sec:    11172, Lr: 0.000300\n",
            "2020-07-12 21:39:32,606 Example #0\n",
            "2020-07-12 21:39:32,607 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:39:32,607 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:39:32,607 \tHypothesis: Pokhala anthu amene tinali kusonkhana ndi anthu amene tinali kutitenga padziko lonse lapansi\n",
            "2020-07-12 21:39:32,608 Example #1\n",
            "2020-07-12 21:39:32,608 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:39:32,608 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:39:32,608 \tHypothesis: Iye angaone kuti anali ndi vuto loipa kwambili kwa zaka zambili .\n",
            "2020-07-12 21:39:32,608 Example #2\n",
            "2020-07-12 21:39:32,609 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:39:32,609 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:39:32,609 \tHypothesis: Ndi zocitika ziti zimene Mose anapeleka pamene mau a Paulo analembedwa pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:39:32,609 Example #3\n",
            "2020-07-12 21:39:32,610 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:39:32,610 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:39:32,610 \tHypothesis: Palibe Cikondi Cimene Cimene Cisomo Cili pa July\n",
            "2020-07-12 21:39:32,610 Validation result (greedy) at epoch  30, step    17000: bleu:  14.18, loss: 53287.4102, ppl:   8.5788, duration: 20.7991s\n",
            "2020-07-12 21:39:51,069 Epoch  30 Step:    17100 Batch Loss:     1.996659 Tokens per Sec:    11078, Lr: 0.000300\n",
            "2020-07-12 21:40:09,724 Epoch  30 Step:    17200 Batch Loss:     2.441917 Tokens per Sec:    11321, Lr: 0.000300\n",
            "2020-07-12 21:40:28,184 Epoch  30 Step:    17300 Batch Loss:     2.245591 Tokens per Sec:    11227, Lr: 0.000300\n",
            "2020-07-12 21:40:46,651 Epoch  30 Step:    17400 Batch Loss:     1.991428 Tokens per Sec:    11026, Lr: 0.000300\n",
            "2020-07-12 21:40:55,549 Epoch  30: total training loss 1207.48\n",
            "2020-07-12 21:40:55,550 EPOCH 31\n",
            "2020-07-12 21:41:05,291 Epoch  31 Step:    17500 Batch Loss:     1.878195 Tokens per Sec:    11394, Lr: 0.000300\n",
            "2020-07-12 21:41:23,650 Epoch  31 Step:    17600 Batch Loss:     2.384914 Tokens per Sec:    11117, Lr: 0.000300\n",
            "2020-07-12 21:41:42,167 Epoch  31 Step:    17700 Batch Loss:     2.224703 Tokens per Sec:    11077, Lr: 0.000300\n",
            "2020-07-12 21:42:00,597 Epoch  31 Step:    17800 Batch Loss:     2.243607 Tokens per Sec:    11203, Lr: 0.000300\n",
            "2020-07-12 21:42:19,408 Epoch  31 Step:    17900 Batch Loss:     2.156587 Tokens per Sec:    11277, Lr: 0.000300\n",
            "2020-07-12 21:42:37,706 Epoch  31 Step:    18000 Batch Loss:     1.582895 Tokens per Sec:    11132, Lr: 0.000300\n",
            "2020-07-12 21:43:06,375 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:43:06,375 Saving new checkpoint.\n",
            "2020-07-12 21:43:07,651 Example #0\n",
            "2020-07-12 21:43:07,651 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:43:07,652 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:43:07,652 \tHypothesis: Tinali kugaŵila anthu ambili ku malo osiyanasiyana amene tinali nao padziko lonse\n",
            "2020-07-12 21:43:07,652 Example #1\n",
            "2020-07-12 21:43:07,652 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:43:07,652 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:43:07,653 \tHypothesis: Iye anali kufunitsitsa kuvulaza zinthu zimene anali kucita , ngakhale zaka zambili .\n",
            "2020-07-12 21:43:07,653 Example #2\n",
            "2020-07-12 21:43:07,653 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:43:07,653 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:43:07,654 \tHypothesis: Kodi zocitika za m’nthawi ya Mose zinasonyeza ciani pa mau a Paulo a pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:43:07,654 Example #3\n",
            "2020-07-12 21:43:07,654 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:43:07,654 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:43:07,654 \tHypothesis: Tengelani Citsanzo Cake Cisomo Conse , July\n",
            "2020-07-12 21:43:07,654 Validation result (greedy) at epoch  31, step    18000: bleu:  14.77, loss: 52131.8594, ppl:   8.1881, duration: 29.9481s\n",
            "2020-07-12 21:43:13,475 Epoch  31: total training loss 1202.09\n",
            "2020-07-12 21:43:13,476 EPOCH 32\n",
            "2020-07-12 21:43:26,535 Epoch  32 Step:    18100 Batch Loss:     2.240680 Tokens per Sec:    10869, Lr: 0.000300\n",
            "2020-07-12 21:43:44,600 Epoch  32 Step:    18200 Batch Loss:     1.937984 Tokens per Sec:    11189, Lr: 0.000300\n",
            "2020-07-12 21:44:03,105 Epoch  32 Step:    18300 Batch Loss:     1.852296 Tokens per Sec:    11308, Lr: 0.000300\n",
            "2020-07-12 21:44:21,722 Epoch  32 Step:    18400 Batch Loss:     2.168491 Tokens per Sec:    11348, Lr: 0.000300\n",
            "2020-07-12 21:44:40,145 Epoch  32 Step:    18500 Batch Loss:     2.244599 Tokens per Sec:    11134, Lr: 0.000300\n",
            "2020-07-12 21:44:58,643 Epoch  32 Step:    18600 Batch Loss:     2.211453 Tokens per Sec:    11243, Lr: 0.000300\n",
            "2020-07-12 21:45:01,378 Epoch  32: total training loss 1191.61\n",
            "2020-07-12 21:45:01,379 EPOCH 33\n",
            "2020-07-12 21:45:17,130 Epoch  33 Step:    18700 Batch Loss:     2.181301 Tokens per Sec:    11121, Lr: 0.000300\n",
            "2020-07-12 21:45:35,671 Epoch  33 Step:    18800 Batch Loss:     2.112555 Tokens per Sec:    11139, Lr: 0.000300\n",
            "2020-07-12 21:45:54,058 Epoch  33 Step:    18900 Batch Loss:     1.560102 Tokens per Sec:    11092, Lr: 0.000300\n",
            "2020-07-12 21:46:12,215 Epoch  33 Step:    19000 Batch Loss:     2.184921 Tokens per Sec:    11260, Lr: 0.000300\n",
            "2020-07-12 21:46:31,492 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:46:31,492 Saving new checkpoint.\n",
            "2020-07-12 21:46:32,684 Example #0\n",
            "2020-07-12 21:46:32,685 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:46:32,685 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:46:32,685 \tHypothesis: Tinali kugaŵila mabuku athu pa sitima ya anthu amene tinali kutilengako mbali m’dzikolo\n",
            "2020-07-12 21:46:32,685 Example #1\n",
            "2020-07-12 21:46:32,686 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:46:32,686 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:46:32,686 \tHypothesis: Iye anali kufunitsitsa kuteteza zinthu zina zimene anali kucita m’nthawi yakale , ngakhale kuti zaka zambili zapitazo .\n",
            "2020-07-12 21:46:32,686 Example #2\n",
            "2020-07-12 21:46:32,686 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:46:32,687 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:46:32,687 \tHypothesis: Kodi zocitika za m’nthawi ya Mose zimasonkhezela mau a Paulo pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:46:32,687 Example #3\n",
            "2020-07-12 21:46:32,687 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:46:32,687 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:46:32,688 \tHypothesis: Tengelani Cikondi Cosatha , July\n",
            "2020-07-12 21:46:32,688 Validation result (greedy) at epoch  33, step    19000: bleu:  15.43, loss: 52101.8984, ppl:   8.1782, duration: 20.4726s\n",
            "2020-07-12 21:46:51,651 Epoch  33 Step:    19100 Batch Loss:     2.147182 Tokens per Sec:    11138, Lr: 0.000300\n",
            "2020-07-12 21:47:09,754 Epoch  33: total training loss 1180.51\n",
            "2020-07-12 21:47:09,754 EPOCH 34\n",
            "2020-07-12 21:47:10,167 Epoch  34 Step:    19200 Batch Loss:     1.254606 Tokens per Sec:     7697, Lr: 0.000300\n",
            "2020-07-12 21:47:28,747 Epoch  34 Step:    19300 Batch Loss:     2.237213 Tokens per Sec:    11272, Lr: 0.000300\n",
            "2020-07-12 21:47:47,380 Epoch  34 Step:    19400 Batch Loss:     1.689342 Tokens per Sec:    11192, Lr: 0.000300\n",
            "2020-07-12 21:48:05,737 Epoch  34 Step:    19500 Batch Loss:     1.540750 Tokens per Sec:    11147, Lr: 0.000300\n",
            "2020-07-12 21:48:24,504 Epoch  34 Step:    19600 Batch Loss:     2.257375 Tokens per Sec:    11127, Lr: 0.000300\n",
            "2020-07-12 21:48:42,894 Epoch  34 Step:    19700 Batch Loss:     1.333181 Tokens per Sec:    11175, Lr: 0.000300\n",
            "2020-07-12 21:48:57,675 Epoch  34: total training loss 1170.53\n",
            "2020-07-12 21:48:57,676 EPOCH 35\n",
            "2020-07-12 21:49:01,372 Epoch  35 Step:    19800 Batch Loss:     1.743930 Tokens per Sec:    10966, Lr: 0.000300\n",
            "2020-07-12 21:49:19,865 Epoch  35 Step:    19900 Batch Loss:     1.776612 Tokens per Sec:    11287, Lr: 0.000300\n",
            "2020-07-12 21:49:38,451 Epoch  35 Step:    20000 Batch Loss:     1.984108 Tokens per Sec:    11249, Lr: 0.000300\n",
            "2020-07-12 21:49:56,902 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:49:56,903 Saving new checkpoint.\n",
            "2020-07-12 21:49:58,122 Example #0\n",
            "2020-07-12 21:49:58,123 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:49:58,123 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:49:58,123 \tHypothesis: Tinali kugaŵila ku malo osiyanasiyana kuti tikaloŵe m’dziko latsopano\n",
            "2020-07-12 21:49:58,123 Example #1\n",
            "2020-07-12 21:49:58,124 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:49:58,124 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:49:58,124 \tHypothesis: Iye angaganize kuti anali ndi nkhawa kwambili zokhudza zinthu zimene anacita , ngakhale zaka zambili .\n",
            "2020-07-12 21:49:58,124 Example #2\n",
            "2020-07-12 21:49:58,125 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:49:58,125 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:49:58,125 \tHypothesis: Kodi mau a Paulo a pa 2 Timoteyo 2 : 19 anali ndi zinthu ziti zimene zinacitika m’nthawi ya Mose ?\n",
            "2020-07-12 21:49:58,125 Example #3\n",
            "2020-07-12 21:49:58,125 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:49:58,125 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:49:58,126 \tHypothesis: Tili ndi Ciyembekezo Cabwino Cimene Cimatsogolela , July\n",
            "2020-07-12 21:49:58,126 Validation result (greedy) at epoch  35, step    20000: bleu:  15.35, loss: 51433.5742, ppl:   7.9607, duration: 19.6741s\n",
            "2020-07-12 21:50:17,304 Epoch  35 Step:    20100 Batch Loss:     2.221691 Tokens per Sec:    10735, Lr: 0.000300\n",
            "2020-07-12 21:50:35,839 Epoch  35 Step:    20200 Batch Loss:     2.187058 Tokens per Sec:    11372, Lr: 0.000300\n",
            "2020-07-12 21:50:54,215 Epoch  35 Step:    20300 Batch Loss:     2.000558 Tokens per Sec:    11096, Lr: 0.000300\n",
            "2020-07-12 21:51:05,351 Epoch  35: total training loss 1156.85\n",
            "2020-07-12 21:51:05,352 EPOCH 36\n",
            "2020-07-12 21:51:12,908 Epoch  36 Step:    20400 Batch Loss:     2.145525 Tokens per Sec:    11354, Lr: 0.000300\n",
            "2020-07-12 21:51:31,419 Epoch  36 Step:    20500 Batch Loss:     2.117764 Tokens per Sec:    11099, Lr: 0.000300\n",
            "2020-07-12 21:51:49,883 Epoch  36 Step:    20600 Batch Loss:     2.139196 Tokens per Sec:    11148, Lr: 0.000300\n",
            "2020-07-12 21:52:08,267 Epoch  36 Step:    20700 Batch Loss:     1.803431 Tokens per Sec:    11275, Lr: 0.000300\n",
            "2020-07-12 21:52:26,560 Epoch  36 Step:    20800 Batch Loss:     2.002237 Tokens per Sec:    11100, Lr: 0.000300\n",
            "2020-07-12 21:52:44,998 Epoch  36 Step:    20900 Batch Loss:     2.066098 Tokens per Sec:    11177, Lr: 0.000300\n",
            "2020-07-12 21:52:53,298 Epoch  36: total training loss 1158.20\n",
            "2020-07-12 21:52:53,299 EPOCH 37\n",
            "2020-07-12 21:53:03,462 Epoch  37 Step:    21000 Batch Loss:     1.876578 Tokens per Sec:    11149, Lr: 0.000300\n",
            "2020-07-12 21:53:22,061 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:53:22,062 Saving new checkpoint.\n",
            "2020-07-12 21:53:23,284 Example #0\n",
            "2020-07-12 21:53:23,285 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:53:23,285 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:53:23,285 \tHypothesis: Tinali kugaŵila nchito yoyang’anila dela imene tinali kuyembekezela kudziko lonse\n",
            "2020-07-12 21:53:23,285 Example #1\n",
            "2020-07-12 21:53:23,286 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:53:23,286 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:53:23,286 \tHypothesis: Iye anali ndi nkhawa kwambili cakuti anali atayamba kale , ngakhale zaka zambili zapitazo .\n",
            "2020-07-12 21:53:23,286 Example #2\n",
            "2020-07-12 21:53:23,287 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:53:23,287 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:53:23,287 \tHypothesis: Kodi mau a Mose anali pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:53:23,287 Example #3\n",
            "2020-07-12 21:53:23,288 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:53:23,288 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:53:23,288 \tHypothesis: Tili na Ciyembekezo Cabwino Cimene Cisomo Cimatsogolela , July\n",
            "2020-07-12 21:53:23,288 Validation result (greedy) at epoch  37, step    21000: bleu:  15.83, loss: 51151.2070, ppl:   7.8706, duration: 19.8251s\n",
            "2020-07-12 21:53:42,088 Epoch  37 Step:    21100 Batch Loss:     2.115872 Tokens per Sec:    11126, Lr: 0.000300\n",
            "2020-07-12 21:54:00,599 Epoch  37 Step:    21200 Batch Loss:     2.029389 Tokens per Sec:    11116, Lr: 0.000300\n",
            "2020-07-12 21:54:19,420 Epoch  37 Step:    21300 Batch Loss:     2.030703 Tokens per Sec:    11442, Lr: 0.000300\n",
            "2020-07-12 21:54:37,743 Epoch  37 Step:    21400 Batch Loss:     2.162308 Tokens per Sec:    11304, Lr: 0.000300\n",
            "2020-07-12 21:54:56,431 Epoch  37 Step:    21500 Batch Loss:     2.328736 Tokens per Sec:    11388, Lr: 0.000300\n",
            "2020-07-12 21:55:00,472 Epoch  37: total training loss 1133.69\n",
            "2020-07-12 21:55:00,472 EPOCH 38\n",
            "2020-07-12 21:55:14,795 Epoch  38 Step:    21600 Batch Loss:     1.523328 Tokens per Sec:    10858, Lr: 0.000300\n",
            "2020-07-12 21:55:33,693 Epoch  38 Step:    21700 Batch Loss:     2.188564 Tokens per Sec:    11432, Lr: 0.000300\n",
            "2020-07-12 21:55:52,043 Epoch  38 Step:    21800 Batch Loss:     2.258023 Tokens per Sec:    11232, Lr: 0.000300\n",
            "2020-07-12 21:56:10,512 Epoch  38 Step:    21900 Batch Loss:     2.049119 Tokens per Sec:    11190, Lr: 0.000300\n",
            "2020-07-12 21:56:29,208 Epoch  38 Step:    22000 Batch Loss:     2.075769 Tokens per Sec:    11375, Lr: 0.000300\n",
            "2020-07-12 21:56:55,370 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 21:56:55,370 Saving new checkpoint.\n",
            "2020-07-12 21:56:56,543 Example #0\n",
            "2020-07-12 21:56:56,544 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 21:56:56,544 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 21:56:56,544 \tHypothesis: Tinali kusonkhana ndi anthu ambili amene tinali kukhala nao m’dziko lathu\n",
            "2020-07-12 21:56:56,544 Example #1\n",
            "2020-07-12 21:56:56,545 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 21:56:56,545 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 21:56:56,545 \tHypothesis: Iye anali kufunitsitsa kuteteza zinthu zina zimene anacita , ngakhale zaka zambili zapitazo .\n",
            "2020-07-12 21:56:56,545 Example #2\n",
            "2020-07-12 21:56:56,545 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 21:56:56,545 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:56:56,546 \tHypothesis: Ndi zocitika ziti zimene zinacitikila Mose pamene mau a Paulo a pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 21:56:56,546 Example #3\n",
            "2020-07-12 21:56:56,546 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 21:56:56,546 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 21:56:56,546 \tHypothesis: Tengelani Ciyembekezo Cabwino Cimene Cili pa Cisomo , July\n",
            "2020-07-12 21:56:56,547 Validation result (greedy) at epoch  38, step    22000: bleu:  15.78, loss: 50394.4102, ppl:   7.6340, duration: 27.3318s\n",
            "2020-07-12 21:57:15,159 Epoch  38 Step:    22100 Batch Loss:     1.969265 Tokens per Sec:    10923, Lr: 0.000300\n",
            "2020-07-12 21:57:15,721 Epoch  38: total training loss 1131.84\n",
            "2020-07-12 21:57:15,721 EPOCH 39\n",
            "2020-07-12 21:57:33,739 Epoch  39 Step:    22200 Batch Loss:     1.735266 Tokens per Sec:    11283, Lr: 0.000300\n",
            "2020-07-12 21:57:52,243 Epoch  39 Step:    22300 Batch Loss:     2.093395 Tokens per Sec:    11086, Lr: 0.000300\n",
            "2020-07-12 21:58:10,911 Epoch  39 Step:    22400 Batch Loss:     1.781759 Tokens per Sec:    11207, Lr: 0.000300\n",
            "2020-07-12 21:58:29,487 Epoch  39 Step:    22500 Batch Loss:     1.843250 Tokens per Sec:    11430, Lr: 0.000300\n",
            "2020-07-12 21:58:48,064 Epoch  39 Step:    22600 Batch Loss:     2.179653 Tokens per Sec:    11112, Lr: 0.000300\n",
            "2020-07-12 21:59:03,220 Epoch  39: total training loss 1123.27\n",
            "2020-07-12 21:59:03,221 EPOCH 40\n",
            "2020-07-12 21:59:06,699 Epoch  40 Step:    22700 Batch Loss:     2.049891 Tokens per Sec:    11025, Lr: 0.000300\n",
            "2020-07-12 21:59:24,988 Epoch  40 Step:    22800 Batch Loss:     1.811621 Tokens per Sec:    11263, Lr: 0.000300\n",
            "2020-07-12 21:59:43,458 Epoch  40 Step:    22900 Batch Loss:     2.082726 Tokens per Sec:    11251, Lr: 0.000300\n",
            "2020-07-12 22:00:01,795 Epoch  40 Step:    23000 Batch Loss:     1.971813 Tokens per Sec:    11260, Lr: 0.000300\n",
            "2020-07-12 22:00:23,644 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:00:23,644 Saving new checkpoint.\n",
            "2020-07-12 22:00:24,843 Example #0\n",
            "2020-07-12 22:00:24,844 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:00:24,844 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:00:24,844 \tHypothesis: Tinali kusukulu athu ambili amene tinali kutitenga ku dziko lonse\n",
            "2020-07-12 22:00:24,844 Example #1\n",
            "2020-07-12 22:00:24,845 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:00:24,845 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:00:24,845 \tHypothesis: Mwina iye anali ndi maganizo olakwika ponena za zinthu zimene anacita , ngakhale zaka zambili .\n",
            "2020-07-12 22:00:24,846 Example #2\n",
            "2020-07-12 22:00:24,846 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:00:24,846 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:00:24,847 \tHypothesis: Ndi zocitika ziti zimene Mose anapeleka pamene Paulo analembedwa pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:00:24,847 Example #3\n",
            "2020-07-12 22:00:24,848 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:00:24,848 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:00:24,848 \tHypothesis: Tiziseŵenzetsa Uthenga Wabwino wa Uthenga Wabwino , July\n",
            "2020-07-12 22:00:24,848 Validation result (greedy) at epoch  40, step    23000: bleu:  16.34, loss: 50194.8047, ppl:   7.5727, duration: 23.0523s\n",
            "2020-07-12 22:00:43,690 Epoch  40 Step:    23100 Batch Loss:     2.083548 Tokens per Sec:    11131, Lr: 0.000300\n",
            "2020-07-12 22:01:01,894 Epoch  40 Step:    23200 Batch Loss:     2.167542 Tokens per Sec:    11281, Lr: 0.000300\n",
            "2020-07-12 22:01:13,658 Epoch  40: total training loss 1120.55\n",
            "2020-07-12 22:01:13,658 EPOCH 41\n",
            "2020-07-12 22:01:20,741 Epoch  41 Step:    23300 Batch Loss:     1.966002 Tokens per Sec:    11656, Lr: 0.000300\n",
            "2020-07-12 22:01:39,354 Epoch  41 Step:    23400 Batch Loss:     2.233330 Tokens per Sec:    11330, Lr: 0.000300\n",
            "2020-07-12 22:01:57,616 Epoch  41 Step:    23500 Batch Loss:     2.065772 Tokens per Sec:    11154, Lr: 0.000300\n",
            "2020-07-12 22:02:16,084 Epoch  41 Step:    23600 Batch Loss:     1.971395 Tokens per Sec:    11143, Lr: 0.000300\n",
            "2020-07-12 22:02:34,781 Epoch  41 Step:    23700 Batch Loss:     2.025626 Tokens per Sec:    11371, Lr: 0.000300\n",
            "2020-07-12 22:02:53,147 Epoch  41 Step:    23800 Batch Loss:     2.111092 Tokens per Sec:    10892, Lr: 0.000300\n",
            "2020-07-12 22:03:01,268 Epoch  41: total training loss 1111.13\n",
            "2020-07-12 22:03:01,268 EPOCH 42\n",
            "2020-07-12 22:03:11,680 Epoch  42 Step:    23900 Batch Loss:     1.773509 Tokens per Sec:    11092, Lr: 0.000300\n",
            "2020-07-12 22:03:30,104 Epoch  42 Step:    24000 Batch Loss:     1.953830 Tokens per Sec:    11281, Lr: 0.000300\n",
            "2020-07-12 22:03:51,841 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:03:51,841 Saving new checkpoint.\n",
            "2020-07-12 22:03:53,453 Example #0\n",
            "2020-07-12 22:03:53,454 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:03:53,454 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:03:53,454 \tHypothesis: Padziko lonse lapansi , anthu amene tinali kusamalila dziko lapansi\n",
            "2020-07-12 22:03:53,454 Example #1\n",
            "2020-07-12 22:03:53,455 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:03:53,455 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:03:53,455 \tHypothesis: Iye angafunike kukangana ndi munthu amene anacitapo zinthu zakale , ngakhale kuti zaka zambili zapitazo .\n",
            "2020-07-12 22:03:53,455 Example #2\n",
            "2020-07-12 22:03:53,455 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:03:53,456 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:03:53,456 \tHypothesis: Kodi mau a Paulo a pa 2 Timoteyo 2 : 19 , ati : 19 .\n",
            "2020-07-12 22:03:53,456 Example #3\n",
            "2020-07-12 22:03:53,456 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:03:53,456 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:03:53,457 \tHypothesis: Tizionetsa Kuti Mmene Mumalandila Cikondi Conse , July\n",
            "2020-07-12 22:03:53,457 Validation result (greedy) at epoch  42, step    24000: bleu:  16.58, loss: 50057.7031, ppl:   7.5310, duration: 23.3520s\n",
            "2020-07-12 22:04:12,268 Epoch  42 Step:    24100 Batch Loss:     2.251055 Tokens per Sec:    11104, Lr: 0.000300\n",
            "2020-07-12 22:04:30,993 Epoch  42 Step:    24200 Batch Loss:     2.124293 Tokens per Sec:    11434, Lr: 0.000300\n",
            "2020-07-12 22:04:49,415 Epoch  42 Step:    24300 Batch Loss:     1.837537 Tokens per Sec:    11014, Lr: 0.000300\n",
            "2020-07-12 22:05:07,639 Epoch  42 Step:    24400 Batch Loss:     1.755044 Tokens per Sec:    10997, Lr: 0.000300\n",
            "2020-07-12 22:05:12,681 Epoch  42: total training loss 1109.49\n",
            "2020-07-12 22:05:12,682 EPOCH 43\n",
            "2020-07-12 22:05:26,184 Epoch  43 Step:    24500 Batch Loss:     1.948527 Tokens per Sec:    10963, Lr: 0.000300\n",
            "2020-07-12 22:05:44,812 Epoch  43 Step:    24600 Batch Loss:     1.826027 Tokens per Sec:    11271, Lr: 0.000300\n",
            "2020-07-12 22:06:03,454 Epoch  43 Step:    24700 Batch Loss:     1.973153 Tokens per Sec:    11319, Lr: 0.000300\n",
            "2020-07-12 22:06:21,788 Epoch  43 Step:    24800 Batch Loss:     1.975532 Tokens per Sec:    11232, Lr: 0.000300\n",
            "2020-07-12 22:06:40,262 Epoch  43 Step:    24900 Batch Loss:     1.272901 Tokens per Sec:    11025, Lr: 0.000300\n",
            "2020-07-12 22:06:58,732 Epoch  43 Step:    25000 Batch Loss:     2.216368 Tokens per Sec:    11351, Lr: 0.000300\n",
            "2020-07-12 22:07:22,825 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:07:22,825 Saving new checkpoint.\n",
            "2020-07-12 22:07:24,023 Example #0\n",
            "2020-07-12 22:07:24,024 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:07:24,024 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:07:24,024 \tHypothesis: Tinali kugula makilomita a pa nyumba yathu imene tinali kutitenga padziko lonse lapansi\n",
            "2020-07-12 22:07:24,024 Example #1\n",
            "2020-07-12 22:07:24,024 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:07:24,025 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:07:24,025 \tHypothesis: Iye angagonje ndi kuteteza zinthu zina zimene anacita , ngakhale zaka zambili zapitazo .\n",
            "2020-07-12 22:07:24,025 Example #2\n",
            "2020-07-12 22:07:24,025 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:07:24,025 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:07:24,026 \tHypothesis: Kodi mau a Mose a pa 2 Timoteyo 2 : 19 amati ?\n",
            "2020-07-12 22:07:24,026 Example #3\n",
            "2020-07-12 22:07:24,026 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:07:24,026 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:07:24,026 \tHypothesis: Tiziyamikila Cikondi Cosatha , July\n",
            "2020-07-12 22:07:24,027 Validation result (greedy) at epoch  43, step    25000: bleu:  16.62, loss: 49733.6367, ppl:   7.4332, duration: 25.2938s\n",
            "2020-07-12 22:07:25,611 Epoch  43: total training loss 1100.98\n",
            "2020-07-12 22:07:25,611 EPOCH 44\n",
            "2020-07-12 22:07:43,008 Epoch  44 Step:    25100 Batch Loss:     1.881896 Tokens per Sec:    11029, Lr: 0.000300\n",
            "2020-07-12 22:08:01,573 Epoch  44 Step:    25200 Batch Loss:     1.957312 Tokens per Sec:    11001, Lr: 0.000300\n",
            "2020-07-12 22:08:20,036 Epoch  44 Step:    25300 Batch Loss:     2.177895 Tokens per Sec:    11360, Lr: 0.000300\n",
            "2020-07-12 22:08:38,535 Epoch  44 Step:    25400 Batch Loss:     1.982558 Tokens per Sec:    11313, Lr: 0.000300\n",
            "2020-07-12 22:08:57,047 Epoch  44 Step:    25500 Batch Loss:     1.973275 Tokens per Sec:    11074, Lr: 0.000300\n",
            "2020-07-12 22:09:13,600 Epoch  44: total training loss 1091.23\n",
            "2020-07-12 22:09:13,600 EPOCH 45\n",
            "2020-07-12 22:09:15,716 Epoch  45 Step:    25600 Batch Loss:     1.971170 Tokens per Sec:    11097, Lr: 0.000300\n",
            "2020-07-12 22:09:34,280 Epoch  45 Step:    25700 Batch Loss:     1.735779 Tokens per Sec:    11237, Lr: 0.000300\n",
            "2020-07-12 22:09:53,076 Epoch  45 Step:    25800 Batch Loss:     2.019991 Tokens per Sec:    11135, Lr: 0.000300\n",
            "2020-07-12 22:10:11,497 Epoch  45 Step:    25900 Batch Loss:     2.067264 Tokens per Sec:    11276, Lr: 0.000300\n",
            "2020-07-12 22:10:29,870 Epoch  45 Step:    26000 Batch Loss:     1.724764 Tokens per Sec:    11282, Lr: 0.000300\n",
            "2020-07-12 22:10:58,947 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:10:58,947 Saving new checkpoint.\n",
            "2020-07-12 22:11:00,070 Example #0\n",
            "2020-07-12 22:11:00,071 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:11:00,071 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:11:00,071 \tHypothesis: Nchito yathu inali yosamalila nyumba yathu imene tinali kutitenga padziko lonse lapansi\n",
            "2020-07-12 22:11:00,071 Example #1\n",
            "2020-07-12 22:11:00,072 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:11:00,072 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:11:00,072 \tHypothesis: Iye ayenela kuti anali ndi maganizo olakwika ponena za zimene anacita zaka zambili , ngakhale kuti anali ndi zaka zambili .\n",
            "2020-07-12 22:11:00,072 Example #2\n",
            "2020-07-12 22:11:00,073 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:11:00,073 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:11:00,073 \tHypothesis: Ndi zocitika ziti zimene Mose anapeleka pamene mau a Paulo a pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:11:00,073 Example #3\n",
            "2020-07-12 22:11:00,073 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:11:00,074 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:11:00,074 \tHypothesis: Pitilizani Kukonda Uthenga Wabwino wa Uthenga Wabwino , July\n",
            "2020-07-12 22:11:00,074 Validation result (greedy) at epoch  45, step    26000: bleu:  16.82, loss: 49328.4375, ppl:   7.3127, duration: 30.2034s\n",
            "2020-07-12 22:11:18,810 Epoch  45 Step:    26100 Batch Loss:     2.169725 Tokens per Sec:    10929, Lr: 0.000300\n",
            "2020-07-12 22:11:31,845 Epoch  45: total training loss 1088.19\n",
            "2020-07-12 22:11:31,845 EPOCH 46\n",
            "2020-07-12 22:11:37,251 Epoch  46 Step:    26200 Batch Loss:     1.817476 Tokens per Sec:    10952, Lr: 0.000300\n",
            "2020-07-12 22:11:55,657 Epoch  46 Step:    26300 Batch Loss:     2.044828 Tokens per Sec:    11302, Lr: 0.000300\n",
            "2020-07-12 22:12:14,261 Epoch  46 Step:    26400 Batch Loss:     1.758926 Tokens per Sec:    11395, Lr: 0.000300\n",
            "2020-07-12 22:12:32,741 Epoch  46 Step:    26500 Batch Loss:     1.957885 Tokens per Sec:    11173, Lr: 0.000300\n",
            "2020-07-12 22:12:51,217 Epoch  46 Step:    26600 Batch Loss:     1.730212 Tokens per Sec:    11167, Lr: 0.000300\n",
            "2020-07-12 22:13:09,649 Epoch  46 Step:    26700 Batch Loss:     2.047805 Tokens per Sec:    11242, Lr: 0.000300\n",
            "2020-07-12 22:13:19,165 Epoch  46: total training loss 1079.66\n",
            "2020-07-12 22:13:19,165 EPOCH 47\n",
            "2020-07-12 22:13:28,404 Epoch  47 Step:    26800 Batch Loss:     1.963683 Tokens per Sec:    11235, Lr: 0.000300\n",
            "2020-07-12 22:13:47,092 Epoch  47 Step:    26900 Batch Loss:     1.714284 Tokens per Sec:    11292, Lr: 0.000300\n",
            "2020-07-12 22:14:05,542 Epoch  47 Step:    27000 Batch Loss:     1.860049 Tokens per Sec:    11263, Lr: 0.000300\n",
            "2020-07-12 22:14:33,907 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:14:33,908 Saving new checkpoint.\n",
            "2020-07-12 22:14:35,080 Example #0\n",
            "2020-07-12 22:14:35,080 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:14:35,080 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:14:35,081 \tHypothesis: Pokhala nchito yapamwamba imene tinali kugwilila nchito , tinali kutitenga ku dziko lonse\n",
            "2020-07-12 22:14:35,081 Example #1\n",
            "2020-07-12 22:14:35,081 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:14:35,081 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:14:35,081 \tHypothesis: Iye ayenela kuti anali ndi nkhawa kwambili ponena za zinthu zimene anacita kwa zaka zambili .\n",
            "2020-07-12 22:14:35,081 Example #2\n",
            "2020-07-12 22:14:35,082 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:14:35,082 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:14:35,082 \tHypothesis: Ndi zocitika ziti zimene zinacitikila m’nthawi ya Mose pamene mau a Paulo analembedwa pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:14:35,082 Example #3\n",
            "2020-07-12 22:14:35,083 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:14:35,083 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:14:35,083 \tHypothesis: Tiziyamikila Cisomo Cimene Cisomo Cili pa July\n",
            "2020-07-12 22:14:35,083 Validation result (greedy) at epoch  47, step    27000: bleu:  16.73, loss: 49233.0117, ppl:   7.2846, duration: 29.5404s\n",
            "2020-07-12 22:14:53,720 Epoch  47 Step:    27100 Batch Loss:     1.741834 Tokens per Sec:    11139, Lr: 0.000300\n",
            "2020-07-12 22:15:12,052 Epoch  47 Step:    27200 Batch Loss:     2.265993 Tokens per Sec:    11159, Lr: 0.000300\n",
            "2020-07-12 22:15:30,733 Epoch  47 Step:    27300 Batch Loss:     1.931313 Tokens per Sec:    11214, Lr: 0.000300\n",
            "2020-07-12 22:15:36,313 Epoch  47: total training loss 1070.92\n",
            "2020-07-12 22:15:36,313 EPOCH 48\n",
            "2020-07-12 22:15:49,093 Epoch  48 Step:    27400 Batch Loss:     1.875881 Tokens per Sec:    11401, Lr: 0.000300\n",
            "2020-07-12 22:16:07,463 Epoch  48 Step:    27500 Batch Loss:     1.767903 Tokens per Sec:    11273, Lr: 0.000300\n",
            "2020-07-12 22:16:25,958 Epoch  48 Step:    27600 Batch Loss:     2.175007 Tokens per Sec:    11324, Lr: 0.000300\n",
            "2020-07-12 22:16:44,312 Epoch  48 Step:    27700 Batch Loss:     1.650685 Tokens per Sec:    11127, Lr: 0.000300\n",
            "2020-07-12 22:17:02,594 Epoch  48 Step:    27800 Batch Loss:     1.905820 Tokens per Sec:    11334, Lr: 0.000300\n",
            "2020-07-12 22:17:21,133 Epoch  48 Step:    27900 Batch Loss:     1.916827 Tokens per Sec:    10965, Lr: 0.000300\n",
            "2020-07-12 22:17:23,769 Epoch  48: total training loss 1075.79\n",
            "2020-07-12 22:17:23,770 EPOCH 49\n",
            "2020-07-12 22:17:39,734 Epoch  49 Step:    28000 Batch Loss:     1.575364 Tokens per Sec:    11227, Lr: 0.000300\n",
            "2020-07-12 22:18:05,316 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:18:05,317 Saving new checkpoint.\n",
            "2020-07-12 22:18:06,639 Example #0\n",
            "2020-07-12 22:18:06,640 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:18:06,640 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:18:06,640 \tHypothesis: Nchito yathu yapamwamba imene tinali kugula inali itayamba padziko lonse\n",
            "2020-07-12 22:18:06,640 Example #1\n",
            "2020-07-12 22:18:06,641 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:18:06,641 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:18:06,641 \tHypothesis: Iye ayenela kuti anali kufunitsitsa kuteteza zinthu zimene anacita kale , ngakhale kuti anali ndi zaka zambili .\n",
            "2020-07-12 22:18:06,641 Example #2\n",
            "2020-07-12 22:18:06,642 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:18:06,642 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:18:06,642 \tHypothesis: Kodi mau a Mose a m’nthawi ya Mose analembedwa pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:18:06,642 Example #3\n",
            "2020-07-12 22:18:06,642 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:18:06,643 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:18:06,643 \tHypothesis: Tisamalile Cikondi Cosatha , July\n",
            "2020-07-12 22:18:06,643 Validation result (greedy) at epoch  49, step    28000: bleu:  16.77, loss: 49109.4180, ppl:   7.2484, duration: 26.9085s\n",
            "2020-07-12 22:18:25,231 Epoch  49 Step:    28100 Batch Loss:     1.950407 Tokens per Sec:    11020, Lr: 0.000300\n",
            "2020-07-12 22:18:43,852 Epoch  49 Step:    28200 Batch Loss:     1.889157 Tokens per Sec:    11197, Lr: 0.000300\n",
            "2020-07-12 22:19:02,298 Epoch  49 Step:    28300 Batch Loss:     1.516591 Tokens per Sec:    11353, Lr: 0.000300\n",
            "2020-07-12 22:19:20,672 Epoch  49 Step:    28400 Batch Loss:     1.849100 Tokens per Sec:    10975, Lr: 0.000300\n",
            "2020-07-12 22:19:38,587 Epoch  49: total training loss 1066.71\n",
            "2020-07-12 22:19:38,587 EPOCH 50\n",
            "2020-07-12 22:19:39,232 Epoch  50 Step:    28500 Batch Loss:     2.093219 Tokens per Sec:    10509, Lr: 0.000300\n",
            "2020-07-12 22:19:57,742 Epoch  50 Step:    28600 Batch Loss:     1.851735 Tokens per Sec:    11065, Lr: 0.000300\n",
            "2020-07-12 22:20:16,555 Epoch  50 Step:    28700 Batch Loss:     1.862564 Tokens per Sec:    11354, Lr: 0.000300\n",
            "2020-07-12 22:20:35,050 Epoch  50 Step:    28800 Batch Loss:     2.086834 Tokens per Sec:    11289, Lr: 0.000300\n",
            "2020-07-12 22:20:53,602 Epoch  50 Step:    28900 Batch Loss:     1.967869 Tokens per Sec:    11367, Lr: 0.000300\n",
            "2020-07-12 22:21:12,089 Epoch  50 Step:    29000 Batch Loss:     1.799863 Tokens per Sec:    10979, Lr: 0.000300\n",
            "2020-07-12 22:21:33,248 Hooray! New best validation result [ppl]!\n",
            "2020-07-12 22:21:33,249 Saving new checkpoint.\n",
            "2020-07-12 22:21:34,414 Example #0\n",
            "2020-07-12 22:21:34,415 \tSource:     Our professional ballet careers took us around the world to dance\n",
            "2020-07-12 22:21:34,415 \tReference:  Cifukwa cokhala ndi maluso ovina , tinayenda m’madela ambili padziko lapansi\n",
            "2020-07-12 22:21:34,415 \tHypothesis: Nchito yathu yolalikila inali yosiyana kwambili ndi anthu amene tinali kukhala m’dziko la Japan\n",
            "2020-07-12 22:21:34,415 Example #1\n",
            "2020-07-12 22:21:34,415 \tSource:     He may be plagued with guilt about something he did in the past , even many years ago .\n",
            "2020-07-12 22:21:34,415 \tReference:  Taona kale mmene Davide na Paulo anakambilapo za nkhawa zawo .\n",
            "2020-07-12 22:21:34,416 \tHypothesis: Iye ayenela kuti anali ndi nkhawa kwambili za zinthu zimene anacita zaka zambili , ngakhale kuti anali ndi zaka zambili .\n",
            "2020-07-12 22:21:34,416 Example #2\n",
            "2020-07-12 22:21:34,416 \tSource:     What events in Moses ’ day provide the background for Paul’s words recorded at 2 Timothy 2 : 19 ?\n",
            "2020-07-12 22:21:34,416 \tReference:  Ndi zocitika ziti za m’nthawi ya Mose zimene zimagwilizana ndi zimene Paulo analemba pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:21:34,416 \tHypothesis: Ndi zocitika ziti zimene zinacitikila Mose pa mau a Paulo a pa 2 Timoteyo 2 : 19 ?\n",
            "2020-07-12 22:21:34,417 Example #3\n",
            "2020-07-12 22:21:34,417 \tSource:     Spread the Good News of Undeserved Kindness , July\n",
            "2020-07-12 22:21:34,417 \tReference:  Lalikilani Uthenga Wabwino Wokamba za Kukoma Mtima , July\n",
            "2020-07-12 22:21:34,417 \tHypothesis: Tiziyesetsa Kuonetsa Cikondi Cosatha , July\n",
            "2020-07-12 22:21:34,420 Validation result (greedy) at epoch  50, step    29000: bleu:  16.81, loss: 48810.3203, ppl:   7.1615, duration: 22.3307s\n",
            "2020-07-12 22:21:48,865 Epoch  50: total training loss 1056.90\n",
            "2020-07-12 22:21:48,866 Training ended after  50 epochs.\n",
            "2020-07-12 22:21:48,866 Best validation result (greedy) at step    29000:   7.16 ppl.\n",
            "/pytorch/aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.\n",
            "2020-07-12 22:22:12,383  dev bleu:  17.72 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-07-12 22:22:12,388 Translations saved to: /content/drive/My Drive/masakhane/model-temp/00029000.hyps.dev\n",
            "2020-07-12 22:22:57,597 test bleu:  30.09 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-07-12 22:22:57,602 Translations saved to: /content/drive/My Drive/masakhane/model-temp/00029000.hyps.test\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "MBoDS09JM807",
        "colab": {}
      },
      "source": [
        "# Copy the created models from the temporary storage to main storage on google drive for persistant storage \n",
        "!cp -r \"/content/drive/My Drive/masakhane/model-temp/\"* \"$gdrive_path/models/${src}${tgt}_transformer/\""
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "n94wlrCjVc17",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 510
        },
        "outputId": "fe5a6c4e-32d4-4100-cb98-d7326ce5ad36"
      },
      "source": [
        "# Output our validation accuracy\n",
        "! cat \"$gdrive_path/models/${src}${tgt}_transformer/validations.txt\""
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Steps: 1000\tLoss: 104985.17969\tPPL: 69.02498\tbleu: 0.72913\tLR: 0.00030000\t*\n",
            "Steps: 2000\tLoss: 87342.05469\tPPL: 33.88090\tbleu: 2.09997\tLR: 0.00030000\t*\n",
            "Steps: 3000\tLoss: 78307.31250\tPPL: 23.53396\tbleu: 3.31598\tLR: 0.00030000\t*\n",
            "Steps: 4000\tLoss: 72736.87500\tPPL: 18.79830\tbleu: 5.24072\tLR: 0.00030000\t*\n",
            "Steps: 5000\tLoss: 68773.72656\tPPL: 16.02127\tbleu: 6.90910\tLR: 0.00030000\t*\n",
            "Steps: 6000\tLoss: 66082.85938\tPPL: 14.37346\tbleu: 8.21670\tLR: 0.00030000\t*\n",
            "Steps: 7000\tLoss: 63526.49609\tPPL: 12.96529\tbleu: 9.07820\tLR: 0.00030000\t*\n",
            "Steps: 8000\tLoss: 61911.11719\tPPL: 12.14747\tbleu: 9.82287\tLR: 0.00030000\t*\n",
            "Steps: 9000\tLoss: 60281.30469\tPPL: 11.37461\tbleu: 10.86482\tLR: 0.00030000\t*\n",
            "Steps: 10000\tLoss: 58961.61328\tPPL: 10.78499\tbleu: 11.17248\tLR: 0.00030000\t*\n",
            "Steps: 11000\tLoss: 57576.37891\tPPL: 10.19894\tbleu: 11.80842\tLR: 0.00030000\t*\n",
            "Steps: 12000\tLoss: 56646.62109\tPPL: 9.82355\tbleu: 12.65364\tLR: 0.00030000\t*\n",
            "Steps: 13000\tLoss: 55712.61328\tPPL: 9.46036\tbleu: 13.00193\tLR: 0.00030000\t*\n",
            "Steps: 14000\tLoss: 54857.13281\tPPL: 9.13950\tbleu: 13.33962\tLR: 0.00030000\t*\n",
            "Steps: 15000\tLoss: 53885.88672\tPPL: 8.78839\tbleu: 13.85405\tLR: 0.00030000\t*\n",
            "Steps: 16000\tLoss: 53204.42578\tPPL: 8.55012\tbleu: 14.67869\tLR: 0.00030000\t*\n",
            "Steps: 17000\tLoss: 53287.41016\tPPL: 8.57879\tbleu: 14.17911\tLR: 0.00030000\t\n",
            "Steps: 18000\tLoss: 52131.85938\tPPL: 8.18812\tbleu: 14.77395\tLR: 0.00030000\t*\n",
            "Steps: 19000\tLoss: 52101.89844\tPPL: 8.17823\tbleu: 15.42948\tLR: 0.00030000\t*\n",
            "Steps: 20000\tLoss: 51433.57422\tPPL: 7.96072\tbleu: 15.35123\tLR: 0.00030000\t*\n",
            "Steps: 21000\tLoss: 51151.20703\tPPL: 7.87057\tbleu: 15.82799\tLR: 0.00030000\t*\n",
            "Steps: 22000\tLoss: 50394.41016\tPPL: 7.63396\tbleu: 15.77829\tLR: 0.00030000\t*\n",
            "Steps: 23000\tLoss: 50194.80469\tPPL: 7.57274\tbleu: 16.33550\tLR: 0.00030000\t*\n",
            "Steps: 24000\tLoss: 50057.70312\tPPL: 7.53098\tbleu: 16.58389\tLR: 0.00030000\t*\n",
            "Steps: 25000\tLoss: 49733.63672\tPPL: 7.43319\tbleu: 16.61687\tLR: 0.00030000\t*\n",
            "Steps: 26000\tLoss: 49328.43750\tPPL: 7.31269\tbleu: 16.81934\tLR: 0.00030000\t*\n",
            "Steps: 27000\tLoss: 49233.01172\tPPL: 7.28460\tbleu: 16.73319\tLR: 0.00030000\t*\n",
            "Steps: 28000\tLoss: 49109.41797\tPPL: 7.24838\tbleu: 16.76788\tLR: 0.00030000\t*\n",
            "Steps: 29000\tLoss: 48810.32031\tPPL: 7.16146\tbleu: 16.81243\tLR: 0.00030000\t*\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab_type": "code",
        "id": "66WhRE9lIhoD",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 85
        },
        "outputId": "565c50c6-de75-409f-db7c-7cb809d8288a"
      },
      "source": [
        "# Test our model\n",
        "! cd joeynmt; python3 -m joeynmt test \"$gdrive_path/models/${src}${tgt}_transformer/config.yaml\"\n"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "2020-07-12 22:31:35,573 Hello! This is Joey-NMT.\n",
            "/pytorch/aten/src/ATen/native/BinaryOps.cpp:81: UserWarning: Integer division of tensors using div or / is deprecated, and in a future release div will perform true division as in Python 3. Use true_divide or floor_divide (// in Python) instead.\n",
            "2020-07-12 22:32:01,727  dev bleu:  17.72 [Beam search decoding with beam size = 5 and alpha = 1.0]\n",
            "2020-07-12 22:32:46,046 test bleu:  30.09 [Beam search decoding with beam size = 5 and alpha = 1.0]\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "GMM9isXuGu-s",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        ""
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}