End of training
Browse files
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: xlm-roberta-large_ALL_BCE_new_data_multihead_19_shuffled_special_tokens
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# xlm-roberta-large_ALL_BCE_new_data_multihead_19_shuffled_special_tokens
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.8445
|
19 |
+
- F1 Macro 0.1: 0.0895
|
20 |
+
- F1 Macro 0.15: 0.1160
|
21 |
+
- F1 Macro 0.2: 0.1402
|
22 |
+
- F1 Macro 0.25: 0.1634
|
23 |
+
- F1 Macro 0.3: 0.1847
|
24 |
+
- F1 Macro 0.35: 0.2040
|
25 |
+
- F1 Macro 0.4: 0.2229
|
26 |
+
- F1 Macro 0.45: 0.2406
|
27 |
+
- F1 Macro 0.5: 0.2583
|
28 |
+
- F1 Macro 0.55: 0.2763
|
29 |
+
- F1 Macro 0.6: 0.2924
|
30 |
+
- F1 Macro 0.65: 0.3101
|
31 |
+
- F1 Macro 0.7: 0.3251
|
32 |
+
- F1 Macro 0.75: 0.3405
|
33 |
+
- F1 Macro 0.8: 0.3547
|
34 |
+
- F1 Macro 0.85: 0.3634
|
35 |
+
- F1 Macro 0.9: 0.3572
|
36 |
+
- F1 Macro 0.95: 0.2839
|
37 |
+
- Threshold 0: 0.8
|
38 |
+
- Threshold 1: 0.85
|
39 |
+
- Threshold 2: 0.9
|
40 |
+
- Threshold 3: 0.9
|
41 |
+
- Threshold 4: 0.8
|
42 |
+
- Threshold 5: 0.85
|
43 |
+
- Threshold 6: 0.8
|
44 |
+
- Threshold 7: 0.9
|
45 |
+
- Threshold 8: 0.9
|
46 |
+
- Threshold 9: 0.8
|
47 |
+
- Threshold 10: 0.95
|
48 |
+
- Threshold 11: 0.85
|
49 |
+
- Threshold 12: 0.9
|
50 |
+
- Threshold 13: 0.8
|
51 |
+
- Threshold 14: 0.9
|
52 |
+
- Threshold 15: 0.85
|
53 |
+
- Threshold 16: 0.85
|
54 |
+
- Threshold 17: 0.85
|
55 |
+
- Threshold 18: 0.9
|
56 |
+
- 0: 0.1543
|
57 |
+
- 1: 0.2738
|
58 |
+
- 2: 0.3791
|
59 |
+
- 3: 0.2915
|
60 |
+
- 4: 0.4439
|
61 |
+
- 5: 0.4944
|
62 |
+
- 6: 0.4463
|
63 |
+
- 7: 0.3216
|
64 |
+
- 8: 0.3402
|
65 |
+
- 9: 0.5410
|
66 |
+
- 10: 0.5665
|
67 |
+
- 11: 0.5310
|
68 |
+
- 12: 0.2331
|
69 |
+
- 13: 0.1319
|
70 |
+
- 14: 0.3899
|
71 |
+
- 15: 0.3173
|
72 |
+
- 16: 0.4432
|
73 |
+
- 17: 0.6120
|
74 |
+
- 18: 0.2342
|
75 |
+
- Max F1: 0.3634
|
76 |
+
- Mean F1: 0.3761
|
77 |
+
|
78 |
+
## Model description
|
79 |
+
|
80 |
+
More information needed
|
81 |
+
|
82 |
+
## Intended uses & limitations
|
83 |
+
|
84 |
+
More information needed
|
85 |
+
|
86 |
+
## Training and evaluation data
|
87 |
+
|
88 |
+
More information needed
|
89 |
+
|
90 |
+
## Training procedure
|
91 |
+
|
92 |
+
### Training hyperparameters
|
93 |
+
|
94 |
+
The following hyperparameters were used during training:
|
95 |
+
- learning_rate: 5e-06
|
96 |
+
- train_batch_size: 8
|
97 |
+
- eval_batch_size: 8
|
98 |
+
- seed: 2024
|
99 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
100 |
+
- lr_scheduler_type: linear
|
101 |
+
- lr_scheduler_warmup_ratio: 0.1
|
102 |
+
- num_epochs: 3
|
103 |
+
- mixed_precision_training: Native AMP
|
104 |
+
|
105 |
+
### Training results
|
106 |
+
|
107 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro 0.1 | F1 Macro 0.15 | F1 Macro 0.2 | F1 Macro 0.25 | F1 Macro 0.3 | F1 Macro 0.35 | F1 Macro 0.4 | F1 Macro 0.45 | F1 Macro 0.5 | F1 Macro 0.55 | F1 Macro 0.6 | F1 Macro 0.65 | F1 Macro 0.7 | F1 Macro 0.75 | F1 Macro 0.8 | F1 Macro 0.85 | F1 Macro 0.9 | F1 Macro 0.95 | Threshold 0 | Threshold 1 | Threshold 2 | Threshold 3 | Threshold 4 | Threshold 5 | Threshold 6 | Threshold 7 | Threshold 8 | Threshold 9 | Threshold 10 | Threshold 11 | Threshold 12 | Threshold 13 | Threshold 14 | Threshold 15 | Threshold 16 | Threshold 17 | Threshold 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Max F1 | Mean F1 |
|
108 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:-------:|
|
109 |
+
| 1.2949 | 1.0 | 5595 | 0.9920 | 0.0638 | 0.0742 | 0.0860 | 0.0994 | 0.1129 | 0.1278 | 0.1430 | 0.1589 | 0.1751 | 0.1903 | 0.2064 | 0.2235 | 0.2373 | 0.2479 | 0.2512 | 0.2275 | 0.1775 | 0.0876 | 0.75 | 0.8 | 0.75 | 0.85 | 0.65 | 0.8 | 0.75 | 0.85 | 0.8 | 0.7 | 0.9 | 0.75 | 0.8 | 0.8 | 0.85 | 0.8 | 0.85 | 0.9 | 0.85 | 0.0863 | 0.1572 | 0.2169 | 0.0959 | 0.2903 | 0.3523 | 0.3723 | 0.1624 | 0.2313 | 0.4610 | 0.3852 | 0.4756 | 0.1678 | 0.1154 | 0.2816 | 0.1848 | 0.3673 | 0.5307 | 0.1168 | 0.2512 | 0.2658 |
|
110 |
+
| 0.9147 | 2.0 | 11190 | 0.9023 | 0.0813 | 0.1044 | 0.1275 | 0.1498 | 0.1706 | 0.1898 | 0.2088 | 0.2261 | 0.2449 | 0.2624 | 0.2798 | 0.2951 | 0.3107 | 0.3233 | 0.3328 | 0.3348 | 0.3156 | 0.2286 | 0.75 | 0.8 | 0.85 | 0.9 | 0.75 | 0.85 | 0.8 | 0.85 | 0.8 | 0.8 | 0.9 | 0.85 | 0.9 | 0.65 | 0.9 | 0.9 | 0.85 | 0.9 | 0.95 | 0.1231 | 0.2517 | 0.3359 | 0.2514 | 0.4106 | 0.4565 | 0.4166 | 0.2556 | 0.3152 | 0.5241 | 0.5686 | 0.5085 | 0.2177 | 0.1176 | 0.3757 | 0.3059 | 0.4286 | 0.5881 | 0.2143 | 0.3348 | 0.3508 |
|
111 |
+
| 0.732 | 3.0 | 16785 | 0.8445 | 0.0895 | 0.1160 | 0.1402 | 0.1634 | 0.1847 | 0.2040 | 0.2229 | 0.2406 | 0.2583 | 0.2763 | 0.2924 | 0.3101 | 0.3251 | 0.3405 | 0.3547 | 0.3634 | 0.3572 | 0.2839 | 0.8 | 0.85 | 0.9 | 0.9 | 0.8 | 0.85 | 0.8 | 0.9 | 0.9 | 0.8 | 0.95 | 0.85 | 0.9 | 0.8 | 0.9 | 0.85 | 0.85 | 0.85 | 0.9 | 0.1543 | 0.2738 | 0.3791 | 0.2915 | 0.4439 | 0.4944 | 0.4463 | 0.3216 | 0.3402 | 0.5410 | 0.5665 | 0.5310 | 0.2331 | 0.1319 | 0.3899 | 0.3173 | 0.4432 | 0.6120 | 0.2342 | 0.3634 | 0.3761 |
|
112 |
+
|
113 |
+
|
114 |
+
### Framework versions
|
115 |
+
|
116 |
+
- Transformers 4.36.1
|
117 |
+
- Pytorch 2.1.0+cu121
|
118 |
+
- Datasets 2.13.1
|
119 |
+
- Tokenizers 0.15.0
|