christophgilles
commited on
Commit
•
d7851ed
1
Parent(s):
1344b91
upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ll_cg.zip +3 -0
- ll_cg/_stable_baselines3_version +1 -0
- ll_cg/data +99 -0
- ll_cg/policy.optimizer.pth +3 -0
- ll_cg/policy.pth +3 -0
- ll_cg/pytorch_variables.pth +3 -0
- ll_cg/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -196.05 +/- 59.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ddbedc84dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ddbedc84e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ddbedc84ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ddbedc84f70>", "_build": "<function ActorCriticPolicy._build at 0x7ddbedc85000>", "forward": "<function ActorCriticPolicy.forward at 0x7ddbedc85090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ddbedc85120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ddbedc851b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ddbedc85240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ddbedc852d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ddbedc85360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ddbedc853f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ddbedc21680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697987723765242077, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJprj7xcqbI/zPOTvmJtI76b9ms8zu+qPQAAAAAAAAAAS2SYvgAxRT8X/Z++rHExv49sN76uvta9AAAAAAAAAABA9hS+nCpVP7pzCjzxd0q/Wi6UvvVFGD4AAAAAAAAAAGDmFj/hYAU+YEpbPvpteL9mYJU+8kbqvQAAgD8AAIA/WsCpPYQOcz49xm6+22JEv2kZ9D2Pfgu+AAAAAAAAAABqZu6+2PiOP5034b6HtQ2/CucMv9moKr4AAAAAAAAAAODkRj4u81s/BkHBPvTFHr/wHjc+wih/PQAAAAAAAAAAU30Rvhd4mT9+ZP2+pukIvydITD1h0jK9AAAAAAAAAABAnbS9FbAuP7Difb610Fi/1i2sPVAnAr4AAAAAAAAAAG1xj75ZGqM/o8OmvqROhr5H7OS+iS2kvgAAAAAAAAAAepxSPg94ZD+Kc9c+Sbc/vx59I73qjII9AAAAAAAAAAB1Hom+tvubP7BV5r5Ntye/7EsoPlGlHL0AAAAAAAAAAMC2gb5nPDM/9jYGvhTcZb+FNtu+jjNfPQAAAAAAAAAAc4edveECWD/O+vS9LPYnv/LYWr5syC26AAAAAAAAAAATAHy+fSUqP0q6Uj5853G/55MMv4MDbz4AAAAAAAAAAHo0Jb6vyFU/yiNevpzKQ78ud1q+ETwmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDRNeeFtbcKMAWyUS1SMAXSUR0BmV6FsYVIqdX2UKGgGR0AwQDgqEvkBaAdLY2gIR0BmWDdLxqfwdX2UKGgGR8BTBDNUwSJ1aAdLSGgIR0BmWIYrJ8v3dX2UKGgGR8A6wALRa5f/aAdLWmgIR0BmWcEFGG21dX2UKGgGR8Ay9qLS/j82aAdLjGgIR0BmXpuEVWS2dX2UKGgGR8BVBcjNY8uBaAdLcGgIR0BmX7vuw5eadX2UKGgGR8BLYB6By0a7aAdLX2gIR0BmYJl4C6pYdX2UKGgGR8A/VMyJsO5KaAdLfWgIR0BmYH5xiobXdX2UKGgGR8BCHMAWBSUDaAdLXGgIR0BmYauU2UB5dX2UKGgGR8BNIGMGX5WSaAdLb2gIR0BmYgnc+JP7dX2UKGgGR8BPBvBzmwJPaAdLgGgIR0BmYzdP+GXYdX2UKGgGR8BT9KCYkVvdaAdLX2gIR0BmY5SBK+SKdX2UKGgGR8A9ZY8dPtUoaAdLWGgIR0BmZLMV1wHadX2UKGgGR8Aw2Jv5xiobaAdLcGgIR0BmZWnGbTc7dX2UKGgGR8BGNBXCCSRsaAdLfmgIR0BmZfl2eQMhdX2UKGgGR8BVzdhNM496aAdLbGgIR0BmZoP3BYV7dX2UKGgGR8Azpm2sq8UVaAdLWGgIR0BmZt9F4LThdX2UKGgGR8BWbm6f8MuwaAdLcWgIR0BmaMUZeiSJdX2UKGgGR8Ax0l6JIlMRaAdLTWgIR0Bmadl9Sde6dX2UKGgGR8BBTNBOYYzjaAdLeGgIR0BmahylvZRLdX2UKGgGR8BCkTcqOLiuaAdLjWgIR0BmafLJSzgNdX2UKGgGR8BGFXE61b7kaAdLX2gIR0BmbSSV4X41dX2UKGgGR8BCQuxKQJXyaAdLaWgIR0BmcGZLIxQBdX2UKGgGR8BSdQvtdAxBaAdLXmgIR0BmcMe0Xxe+dX2UKGgGR8AfxCOWBz3iaAdLeGgIR0BmcZy2hIvrdX2UKGgGR0AlDjAi3XqaaAdLU2gIR0BmcpDst03gdX2UKGgGR8AwAZCOWBz4aAdLa2gIR0Bmc/IU8FINdX2UKGgGR8A2tn3ta6jGaAdLeWgIR0BmdI8dPtUodX2UKGgGR8A9XD9wWFewaAdLhmgIR0BmdUSZjQRgdX2UKGgGR8A7Kn+yZ8a5aAdLkmgIR0BmdXgvUSZjdX2UKGgGR8BRd+QEIPbxaAdLYmgIR0BmduitaIN3dX2UKGgGR8BKnNHxz7uVaAdLemgIR0Bmd2Qnx8UmdX2UKGgGR8Aj8P5pJwsHaAdLh2gIR0BmeLPWxyGSdX2UKGgGR8BBgFAVwgkkaAdLhGgIR0BmeV72L5ymdX2UKGgGR8BSLQ8GLUCraAdLcGgIR0BmegMQVbiZdX2UKGgGR8BXqac/dIoWaAdLdmgIR0BmetMXaakRdX2UKGgGR8BWYq4MF2V3aAdLemgIR0Bme5TAFgUldX2UKGgGR8BPly+Yc/+saAdLd2gIR0Bmfo7vG6wudX2UKGgGR8BBCUiQkonbaAdLamgIR0BmgAatLcsUdX2UKGgGR8AzInf2saKlaAdLYWgIR0BmgMaqCHymdX2UKGgGR8BHyslLOAy3aAdLZmgIR0Bmg1APd2xIdX2UKGgGR8BEAOVgQYk3aAdLYmgIR0BmhRqXWvr4dX2UKGgGR8BR49IbwSamaAdLjWgIR0BmhW3F1jiGdX2UKGgGR8BQcOD8LrooaAdLjGgIR0BmhigM+eOGdX2UKGgGR8AavSVnmJWOaAdLfGgIR0Bmhg0dilSCdX2UKGgGR8BX/d8uzyBkaAdLaWgIR0Bmhr63y7PIdX2UKGgGR8Ak1qM3qAz6aAdLXGgIR0BmiEKqn3tbdX2UKGgGR8BhejXSSeRQaAdLb2gIR0BmiM384xUOdX2UKGgGR8BDP8cdYGMXaAdLiGgIR0BmiOmpEQXidX2UKGgGR8BQSUzfrKNiaAdLiWgIR0BmiTkIX0oSdX2UKGgGR8BXriUkfLcLaAdLf2gIR0Bmjd54W1twdX2UKGgGR8AtQWvbGm1qaAdLi2gIR0BmjfNX5nDjdX2UKGgGR8BTVUIHC4z8aAdLkmgIR0BmjlhE0BOpdX2UKGgGR8BGZsRg7YChaAdLdWgIR0BmkMHWz4UOdX2UKGgGR8BdRzBAOavzaAdLZGgIR0Bmk5eiSJTEdX2UKGgGR8BOjRfOUt7KaAdLgWgIR0Bmk35rP+n7dX2UKGgGR8BOEVHnU2DQaAdLZGgIR0Bmk+lwcYIjdX2UKGgGR8BKVAVXV9WqaAdLY2gIR0BmlHezlcQidX2UKGgGR8BEMZLIxQBQaAdLl2gIR0BmlJB3Roh7dX2UKGgGR8BAhgVXV9WqaAdLXWgIR0Bmlb5wfhdddX2UKGgGR8BClsy8BdUsaAdLhGgIR0BmlmlEZzgddX2UKGgGR8BRa79ycTakaAdLX2gIR0BmlpkCmuTzdX2UKGgGR8BZWBYmsvIwaAdLcGgIR0BmltfPX05EdX2UKGgGR8BQV2ykbgjyaAdLbGgIR0BmmLO1OTJRdX2UKGgGR8AgFb+Lm6oVaAdLhmgIR0BmmSay8jA0dX2UKGgGR8BQB7qD9OynaAdLdWgIR0BmmbcCYCyRdX2UKGgGR8BBV75M10koaAdLVGgIR0BmmiYoiLVGdX2UKGgGR8BMMA8r7O3VaAdLW2gIR0BmmxJd0JWvdX2UKGgGR8BHP8riEQGwaAdLR2gIR0BmnXHggow3dX2UKGgGR8A63hQ3xWkraAdLcGgIR0BmnnT1CgK4dX2UKGgGR8BNCsEidJ8OaAdLZGgIR0BmoeWKMvRJdX2UKGgGR8A488bJfYz0aAdLd2gIR0BmojPfKp1idX2UKGgGR8BaS/8dgfEGaAdLV2gIR0Bmol6u4gA7dX2UKGgGR8A3Z863iJfqaAdLW2gIR0BmpA1gpjMFdX2UKGgGR8BKtmMXJo0zaAdLcmgIR0BmpPyd4FA3dX2UKGgGR8AROOXE61b8aAdLbWgIR0Bmpk0iyIHkdX2UKGgGR8BNPs90Rvm6aAdLW2gIR0BmpjisGPgfdX2UKGgGR8BTPqTKT0QLaAdLWmgIR0Bmpwrxy4nXdX2UKGgGR0A/LQ/5ckdFaAdLf2gIR0BmpwtthuwYdX2UKGgGR8BB/UF0PpY+aAdLiWgIR0Bmp9nuiN83dX2UKGgGR8BMoDK5kK/maAdLT2gIR0BmqWCwr1/UdX2UKGgGR8BK8Qm/nGKiaAdLgGgIR0BmqTslb/wRdX2UKGgGR8BQXZXEIgNgaAdLcGgIR0BmqaebutwKdX2UKGgGR8BMvnBDXvphaAdLd2gIR0Bmq4Chew9rdX2UKGgGR8BBRWicoYvWaAdLXWgIR0BmrCnk1dgOdX2UKGgGR8BKskZ75VOsaAdLfWgIR0BmrUqtozvadX2UKGgGR8BUn0ona37UaAdLXWgIR0Bmr5VIZqEfdX2UKGgGR8BMcP4/NZ/1aAdLYWgIR0Bmsc8HObAldX2UKGgGR8AuHEIgNgBtaAdLXGgIR0BmsgTwlSjydX2UKGgGR8BQrZ2dNFjNaAdLdGgIR0BmsozzmOlwdX2UKGgGR8BTFl/pdKNAaAdLV2gIR0Bms1KbrkbQdX2UKGgGR8BQSZOrQw9JaAdLfGgIR0BmtAHTqjagdX2UKGgGR8BQqoKMNtqIaAdLa2gIR0BmtYcvM8oydX2UKGgGR0ATcXCTEBKdaAdLa2gIR0BmtXE0iyIIdX2UKGgGR8BRmoQJ5VwQaAdLamgIR0BmthV4oqkNdX2UKGgGR8A6ui9Zid8RaAdLWWgIR0Bmtkl1KXfJdX2UKGgGR8ARYC/47A+IaAdLZmgIR0Bmtk5+6RQrdX2UKGgGR8BH5OD8LrooaAdLTWgIR0Bmto1FYuCgdX2UKGgGR8BSd1OfukULaAdLcGgIR0BmuNt8/lhgdX2UKGgGR8BDRHf/FR51aAdLh2gIR0BmvFJOFg2IdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ll_cg.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f214b74058b5212c11a5b23806e825fc4d4fde8f86f6486e07315dc9a0e3f4a
|
3 |
+
size 147917
|
ll_cg/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ll_cg/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ddbedc84dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ddbedc84e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ddbedc84ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ddbedc84f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ddbedc85000>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ddbedc85090>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ddbedc85120>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ddbedc851b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ddbedc85240>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ddbedc852d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ddbedc85360>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ddbedc853f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ddbedc21680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1697987723765242077,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJprj7xcqbI/zPOTvmJtI76b9ms8zu+qPQAAAAAAAAAAS2SYvgAxRT8X/Z++rHExv49sN76uvta9AAAAAAAAAABA9hS+nCpVP7pzCjzxd0q/Wi6UvvVFGD4AAAAAAAAAAGDmFj/hYAU+YEpbPvpteL9mYJU+8kbqvQAAgD8AAIA/WsCpPYQOcz49xm6+22JEv2kZ9D2Pfgu+AAAAAAAAAABqZu6+2PiOP5034b6HtQ2/CucMv9moKr4AAAAAAAAAAODkRj4u81s/BkHBPvTFHr/wHjc+wih/PQAAAAAAAAAAU30Rvhd4mT9+ZP2+pukIvydITD1h0jK9AAAAAAAAAABAnbS9FbAuP7Difb610Fi/1i2sPVAnAr4AAAAAAAAAAG1xj75ZGqM/o8OmvqROhr5H7OS+iS2kvgAAAAAAAAAAepxSPg94ZD+Kc9c+Sbc/vx59I73qjII9AAAAAAAAAAB1Hom+tvubP7BV5r5Ntye/7EsoPlGlHL0AAAAAAAAAAMC2gb5nPDM/9jYGvhTcZb+FNtu+jjNfPQAAAAAAAAAAc4edveECWD/O+vS9LPYnv/LYWr5syC26AAAAAAAAAAATAHy+fSUqP0q6Uj5853G/55MMv4MDbz4AAAAAAAAAAHo0Jb6vyFU/yiNevpzKQ78ud1q+ETwmPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDRNeeFtbcKMAWyUS1SMAXSUR0BmV6FsYVIqdX2UKGgGR0AwQDgqEvkBaAdLY2gIR0BmWDdLxqfwdX2UKGgGR8BTBDNUwSJ1aAdLSGgIR0BmWIYrJ8v3dX2UKGgGR8A6wALRa5f/aAdLWmgIR0BmWcEFGG21dX2UKGgGR8Ay9qLS/j82aAdLjGgIR0BmXpuEVWS2dX2UKGgGR8BVBcjNY8uBaAdLcGgIR0BmX7vuw5eadX2UKGgGR8BLYB6By0a7aAdLX2gIR0BmYJl4C6pYdX2UKGgGR8A/VMyJsO5KaAdLfWgIR0BmYH5xiobXdX2UKGgGR8BCHMAWBSUDaAdLXGgIR0BmYauU2UB5dX2UKGgGR8BNIGMGX5WSaAdLb2gIR0BmYgnc+JP7dX2UKGgGR8BPBvBzmwJPaAdLgGgIR0BmYzdP+GXYdX2UKGgGR8BT9KCYkVvdaAdLX2gIR0BmY5SBK+SKdX2UKGgGR8A9ZY8dPtUoaAdLWGgIR0BmZLMV1wHadX2UKGgGR8Aw2Jv5xiobaAdLcGgIR0BmZWnGbTc7dX2UKGgGR8BGNBXCCSRsaAdLfmgIR0BmZfl2eQMhdX2UKGgGR8BVzdhNM496aAdLbGgIR0BmZoP3BYV7dX2UKGgGR8Azpm2sq8UVaAdLWGgIR0BmZt9F4LThdX2UKGgGR8BWbm6f8MuwaAdLcWgIR0BmaMUZeiSJdX2UKGgGR8Ax0l6JIlMRaAdLTWgIR0Bmadl9Sde6dX2UKGgGR8BBTNBOYYzjaAdLeGgIR0BmahylvZRLdX2UKGgGR8BCkTcqOLiuaAdLjWgIR0BmafLJSzgNdX2UKGgGR8BGFXE61b7kaAdLX2gIR0BmbSSV4X41dX2UKGgGR8BCQuxKQJXyaAdLaWgIR0BmcGZLIxQBdX2UKGgGR8BSdQvtdAxBaAdLXmgIR0BmcMe0Xxe+dX2UKGgGR8AfxCOWBz3iaAdLeGgIR0BmcZy2hIvrdX2UKGgGR0AlDjAi3XqaaAdLU2gIR0BmcpDst03gdX2UKGgGR8AwAZCOWBz4aAdLa2gIR0Bmc/IU8FINdX2UKGgGR8A2tn3ta6jGaAdLeWgIR0BmdI8dPtUodX2UKGgGR8A9XD9wWFewaAdLhmgIR0BmdUSZjQRgdX2UKGgGR8A7Kn+yZ8a5aAdLkmgIR0BmdXgvUSZjdX2UKGgGR8BRd+QEIPbxaAdLYmgIR0BmduitaIN3dX2UKGgGR8BKnNHxz7uVaAdLemgIR0Bmd2Qnx8UmdX2UKGgGR8Aj8P5pJwsHaAdLh2gIR0BmeLPWxyGSdX2UKGgGR8BBgFAVwgkkaAdLhGgIR0BmeV72L5ymdX2UKGgGR8BSLQ8GLUCraAdLcGgIR0BmegMQVbiZdX2UKGgGR8BXqac/dIoWaAdLdmgIR0BmetMXaakRdX2UKGgGR8BWYq4MF2V3aAdLemgIR0Bme5TAFgUldX2UKGgGR8BPly+Yc/+saAdLd2gIR0Bmfo7vG6wudX2UKGgGR8BBCUiQkonbaAdLamgIR0BmgAatLcsUdX2UKGgGR8AzInf2saKlaAdLYWgIR0BmgMaqCHymdX2UKGgGR8BHyslLOAy3aAdLZmgIR0Bmg1APd2xIdX2UKGgGR8BEAOVgQYk3aAdLYmgIR0BmhRqXWvr4dX2UKGgGR8BR49IbwSamaAdLjWgIR0BmhW3F1jiGdX2UKGgGR8BQcOD8LrooaAdLjGgIR0BmhigM+eOGdX2UKGgGR8AavSVnmJWOaAdLfGgIR0Bmhg0dilSCdX2UKGgGR8BX/d8uzyBkaAdLaWgIR0Bmhr63y7PIdX2UKGgGR8Ak1qM3qAz6aAdLXGgIR0BmiEKqn3tbdX2UKGgGR8BhejXSSeRQaAdLb2gIR0BmiM384xUOdX2UKGgGR8BDP8cdYGMXaAdLiGgIR0BmiOmpEQXidX2UKGgGR8BQSUzfrKNiaAdLiWgIR0BmiTkIX0oSdX2UKGgGR8BXriUkfLcLaAdLf2gIR0Bmjd54W1twdX2UKGgGR8AtQWvbGm1qaAdLi2gIR0BmjfNX5nDjdX2UKGgGR8BTVUIHC4z8aAdLkmgIR0BmjlhE0BOpdX2UKGgGR8BGZsRg7YChaAdLdWgIR0BmkMHWz4UOdX2UKGgGR8BdRzBAOavzaAdLZGgIR0Bmk5eiSJTEdX2UKGgGR8BOjRfOUt7KaAdLgWgIR0Bmk35rP+n7dX2UKGgGR8BOEVHnU2DQaAdLZGgIR0Bmk+lwcYIjdX2UKGgGR8BKVAVXV9WqaAdLY2gIR0BmlHezlcQidX2UKGgGR8BEMZLIxQBQaAdLl2gIR0BmlJB3Roh7dX2UKGgGR8BAhgVXV9WqaAdLXWgIR0Bmlb5wfhdddX2UKGgGR8BClsy8BdUsaAdLhGgIR0BmlmlEZzgddX2UKGgGR8BRa79ycTakaAdLX2gIR0BmlpkCmuTzdX2UKGgGR8BZWBYmsvIwaAdLcGgIR0BmltfPX05EdX2UKGgGR8BQV2ykbgjyaAdLbGgIR0BmmLO1OTJRdX2UKGgGR8AgFb+Lm6oVaAdLhmgIR0BmmSay8jA0dX2UKGgGR8BQB7qD9OynaAdLdWgIR0BmmbcCYCyRdX2UKGgGR8BBV75M10koaAdLVGgIR0BmmiYoiLVGdX2UKGgGR8BMMA8r7O3VaAdLW2gIR0BmmxJd0JWvdX2UKGgGR8BHP8riEQGwaAdLR2gIR0BmnXHggow3dX2UKGgGR8A63hQ3xWkraAdLcGgIR0BmnnT1CgK4dX2UKGgGR8BNCsEidJ8OaAdLZGgIR0BmoeWKMvRJdX2UKGgGR8A488bJfYz0aAdLd2gIR0BmojPfKp1idX2UKGgGR8BaS/8dgfEGaAdLV2gIR0Bmol6u4gA7dX2UKGgGR8A3Z863iJfqaAdLW2gIR0BmpA1gpjMFdX2UKGgGR8BKtmMXJo0zaAdLcmgIR0BmpPyd4FA3dX2UKGgGR8AROOXE61b8aAdLbWgIR0Bmpk0iyIHkdX2UKGgGR8BNPs90Rvm6aAdLW2gIR0BmpjisGPgfdX2UKGgGR8BTPqTKT0QLaAdLWmgIR0Bmpwrxy4nXdX2UKGgGR0A/LQ/5ckdFaAdLf2gIR0BmpwtthuwYdX2UKGgGR8BB/UF0PpY+aAdLiWgIR0Bmp9nuiN83dX2UKGgGR8BMoDK5kK/maAdLT2gIR0BmqWCwr1/UdX2UKGgGR8BK8Qm/nGKiaAdLgGgIR0BmqTslb/wRdX2UKGgGR8BQXZXEIgNgaAdLcGgIR0BmqaebutwKdX2UKGgGR8BMvnBDXvphaAdLd2gIR0Bmq4Chew9rdX2UKGgGR8BBRWicoYvWaAdLXWgIR0BmrCnk1dgOdX2UKGgGR8BKskZ75VOsaAdLfWgIR0BmrUqtozvadX2UKGgGR8BUn0ona37UaAdLXWgIR0Bmr5VIZqEfdX2UKGgGR8BMcP4/NZ/1aAdLYWgIR0Bmsc8HObAldX2UKGgGR8AuHEIgNgBtaAdLXGgIR0BmsgTwlSjydX2UKGgGR8BQrZ2dNFjNaAdLdGgIR0BmsozzmOlwdX2UKGgGR8BTFl/pdKNAaAdLV2gIR0Bms1KbrkbQdX2UKGgGR8BQSZOrQw9JaAdLfGgIR0BmtAHTqjagdX2UKGgGR8BQqoKMNtqIaAdLa2gIR0BmtYcvM8oydX2UKGgGR0ATcXCTEBKdaAdLa2gIR0BmtXE0iyIIdX2UKGgGR8BRmoQJ5VwQaAdLamgIR0BmthV4oqkNdX2UKGgGR8A6ui9Zid8RaAdLWWgIR0Bmtkl1KXfJdX2UKGgGR8ARYC/47A+IaAdLZmgIR0Bmtk5+6RQrdX2UKGgGR8BH5OD8LrooaAdLTWgIR0Bmto1FYuCgdX2UKGgGR8BSd1OfukULaAdLcGgIR0BmuNt8/lhgdX2UKGgGR8BDRHf/FR51aAdLh2gIR0BmvFJOFg2IdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 30,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ll_cg/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fee99b53a370695dc3506a5903ff6f2f6f5041b6281a043bea7bf6eeaa0bc3a
|
3 |
+
size 88362
|
ll_cg/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48d14b5d2ba612773a396f04de650e98def3c64d7758cd2487a5b972e10fcbfe
|
3 |
+
size 43762
|
ll_cg/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ll_cg/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (200 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -196.0500559, "std_reward": 59.37731873009107, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-22T15:28:18.363405"}
|