christw16's picture
update model card README.md
f2db82d
metadata
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: wavlm-base-plus_zh_tw_ver2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: zh-TW
          split: test
          args: zh-TW
        metrics:
          - name: Wer
            type: wer
            value: 1

wavlm-base-plus_zh_tw_ver2

This model is a fine-tuned version of microsoft/wavlm-base-plus on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 6.5278
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
82.628 2.5 500 79.5587 1.0
17.5635 5.0 1000 11.5929 1.0
6.4288 7.5 1500 6.4475 1.0
6.4092 10.0 2000 6.4579 1.0
6.3982 12.5 2500 6.4662 1.0
6.391 15.0 3000 6.4655 1.0
6.4097 17.5 3500 6.4691 1.0
6.3986 20.0 4000 6.4702 1.0
6.4069 22.5 4500 6.4761 1.0
6.4158 25.0 5000 6.4750 1.0
6.4117 27.5 5500 6.4816 1.0
6.4086 30.0 6000 6.4806 1.0
6.3992 32.5 6500 6.4872 1.0
6.3946 35.0 7000 6.4866 1.0
6.4212 37.5 7500 6.4895 1.0
6.4051 40.0 8000 6.4926 1.0
6.398 42.5 8500 6.5015 1.0
6.3967 45.0 9000 6.4960 1.0
6.4096 47.5 9500 6.5003 1.0
6.4068 50.0 10000 6.5026 1.0
6.4062 52.5 10500 6.5071 1.0
6.395 55.0 11000 6.5066 1.0
6.4079 57.5 11500 6.5093 1.0
6.411 60.0 12000 6.5106 1.0
6.4023 62.5 12500 6.5112 1.0
6.4053 65.0 13000 6.5143 1.0
6.4103 67.5 13500 6.5172 1.0
6.3899 70.0 14000 6.5182 1.0
6.4054 72.5 14500 6.5197 1.0
6.391 75.0 15000 6.5200 1.0
6.3988 77.5 15500 6.5220 1.0
6.4059 80.0 16000 6.5228 1.0
6.392 82.5 16500 6.5233 1.0
6.3947 85.0 17000 6.5253 1.0
6.3966 87.5 17500 6.5259 1.0
6.3905 90.0 18000 6.5264 1.0
6.4003 92.5 18500 6.5272 1.0
6.3877 95.0 19000 6.5275 1.0
6.3903 97.5 19500 6.5277 1.0
6.3944 100.0 20000 6.5278 1.0

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 1.12.0+cu102
  • Datasets 2.10.1
  • Tokenizers 0.13.2