update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- common_voice
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wavlm-base-plus_zh_tw_ver2
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Automatic Speech Recognition
|
13 |
+
type: automatic-speech-recognition
|
14 |
+
dataset:
|
15 |
+
name: common_voice
|
16 |
+
type: common_voice
|
17 |
+
config: zh-TW
|
18 |
+
split: test
|
19 |
+
args: zh-TW
|
20 |
+
metrics:
|
21 |
+
- name: Wer
|
22 |
+
type: wer
|
23 |
+
value: 1.0
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# wavlm-base-plus_zh_tw_ver2
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the common_voice dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 6.5278
|
34 |
+
- Wer: 1.0
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 7.5e-05
|
54 |
+
- train_batch_size: 32
|
55 |
+
- eval_batch_size: 2
|
56 |
+
- seed: 42
|
57 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
+
- lr_scheduler_type: linear
|
59 |
+
- lr_scheduler_warmup_steps: 2000
|
60 |
+
- num_epochs: 100.0
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---:|
|
67 |
+
| 82.628 | 2.5 | 500 | 79.5587 | 1.0 |
|
68 |
+
| 17.5635 | 5.0 | 1000 | 11.5929 | 1.0 |
|
69 |
+
| 6.4288 | 7.5 | 1500 | 6.4475 | 1.0 |
|
70 |
+
| 6.4092 | 10.0 | 2000 | 6.4579 | 1.0 |
|
71 |
+
| 6.3982 | 12.5 | 2500 | 6.4662 | 1.0 |
|
72 |
+
| 6.391 | 15.0 | 3000 | 6.4655 | 1.0 |
|
73 |
+
| 6.4097 | 17.5 | 3500 | 6.4691 | 1.0 |
|
74 |
+
| 6.3986 | 20.0 | 4000 | 6.4702 | 1.0 |
|
75 |
+
| 6.4069 | 22.5 | 4500 | 6.4761 | 1.0 |
|
76 |
+
| 6.4158 | 25.0 | 5000 | 6.4750 | 1.0 |
|
77 |
+
| 6.4117 | 27.5 | 5500 | 6.4816 | 1.0 |
|
78 |
+
| 6.4086 | 30.0 | 6000 | 6.4806 | 1.0 |
|
79 |
+
| 6.3992 | 32.5 | 6500 | 6.4872 | 1.0 |
|
80 |
+
| 6.3946 | 35.0 | 7000 | 6.4866 | 1.0 |
|
81 |
+
| 6.4212 | 37.5 | 7500 | 6.4895 | 1.0 |
|
82 |
+
| 6.4051 | 40.0 | 8000 | 6.4926 | 1.0 |
|
83 |
+
| 6.398 | 42.5 | 8500 | 6.5015 | 1.0 |
|
84 |
+
| 6.3967 | 45.0 | 9000 | 6.4960 | 1.0 |
|
85 |
+
| 6.4096 | 47.5 | 9500 | 6.5003 | 1.0 |
|
86 |
+
| 6.4068 | 50.0 | 10000 | 6.5026 | 1.0 |
|
87 |
+
| 6.4062 | 52.5 | 10500 | 6.5071 | 1.0 |
|
88 |
+
| 6.395 | 55.0 | 11000 | 6.5066 | 1.0 |
|
89 |
+
| 6.4079 | 57.5 | 11500 | 6.5093 | 1.0 |
|
90 |
+
| 6.411 | 60.0 | 12000 | 6.5106 | 1.0 |
|
91 |
+
| 6.4023 | 62.5 | 12500 | 6.5112 | 1.0 |
|
92 |
+
| 6.4053 | 65.0 | 13000 | 6.5143 | 1.0 |
|
93 |
+
| 6.4103 | 67.5 | 13500 | 6.5172 | 1.0 |
|
94 |
+
| 6.3899 | 70.0 | 14000 | 6.5182 | 1.0 |
|
95 |
+
| 6.4054 | 72.5 | 14500 | 6.5197 | 1.0 |
|
96 |
+
| 6.391 | 75.0 | 15000 | 6.5200 | 1.0 |
|
97 |
+
| 6.3988 | 77.5 | 15500 | 6.5220 | 1.0 |
|
98 |
+
| 6.4059 | 80.0 | 16000 | 6.5228 | 1.0 |
|
99 |
+
| 6.392 | 82.5 | 16500 | 6.5233 | 1.0 |
|
100 |
+
| 6.3947 | 85.0 | 17000 | 6.5253 | 1.0 |
|
101 |
+
| 6.3966 | 87.5 | 17500 | 6.5259 | 1.0 |
|
102 |
+
| 6.3905 | 90.0 | 18000 | 6.5264 | 1.0 |
|
103 |
+
| 6.4003 | 92.5 | 18500 | 6.5272 | 1.0 |
|
104 |
+
| 6.3877 | 95.0 | 19000 | 6.5275 | 1.0 |
|
105 |
+
| 6.3903 | 97.5 | 19500 | 6.5277 | 1.0 |
|
106 |
+
| 6.3944 | 100.0 | 20000 | 6.5278 | 1.0 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.28.0.dev0
|
112 |
+
- Pytorch 1.12.0+cu102
|
113 |
+
- Datasets 2.10.1
|
114 |
+
- Tokenizers 0.13.2
|