--- license: apache-2.0 datasets: - c-s-ale/alpaca-gpt4-data pipeline_tag: text2text-generation --- This repo provides the training checkpoint of LLaMA on the alpaca_data_gpt4 dataset via LoRA [MLP] on 8xA100(80G). He et al. 2022 gave an insight that FFN can better utilize modification at larger capacities. The codes is provided by [tloen/alpaca-lora: Instruct-tune LLaMA on consumer hardware (github.com)](https://github.com/tloen/alpaca-lora). We modify the running scripts to ```bash torchrun --nproc_per_node=8 finetune.py \ --base_model '/cache1/chtan/large_models/llama-hf/llama-65b' \ --data_path './alpaca_data_gpt4.json' \ --output_dir './gpt4-alpaca-lora_mlp-65b' \ --batch_size 128 \ --micro_batch_size 2 \ --num_epochs 10 \ --learning_rate 1e-4 \ --cutoff_len 512 \ --val_set_size 2000 \ --lora_r 16 \ --lora_alpha 16 \ --lora_dropout 0.05 \ --lora_target_modules '[gate_proj,down_proj,up_proj]' \ --train_on_inputs \ --group_by_length ``` > [1] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig: Towards a Unified View of Parameter-Efficient Transfer Learning. ICLR 2022