--- license: llama3 language: - en - zh --- # Llama3-8B-Chinese-Chat-ExPO The extrapolated (ExPO) model based on [`shenzhi-wang/Llama3-70B-Chinese-Chat`](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [`meta-llama/Meta-Llama-3-70B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), as in the "[Weak-to-Strong Extrapolation Expedites Alignment](https://arxiv.org/abs/2404.16792)" paper. Specifically, we obtain this model by extrapolating **(alpha = 0.3)** from the weights of the SFT and DPO/RLHF checkpoints, achieving superior alignment with human preference. **Note:** This is an experimental model, as I have not comprehensively evaluated its Chinese ability. **Unexpected issues may occur when we apply extrapolation to the DPO/RLHF alignment training for new languages (e.g., Chinese).** ## Evaluation Results Evaluation results on the **AlpacaEval 2.0** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_alpaca)): | | Win Rate (Ori) | LC Win Rate (Ori) | Win Rate (+ ExPO) | LC Win Rate (+ ExPO) | | ------------------------------------ | -------------- | ----------------- | ----------------- | -------------------- | | `HuggingFaceH4/zephyr-7b-alpha` | 6.7% | 10.0% | **10.6%** | **13.6%** | | `HuggingFaceH4/zephyr-7b-beta` | 10.2% | 13.2% | **11.1%** | **14.0%** | | `berkeley-nest/Starling-LM-7B-alpha` | 15.0% | 18.3% | **18.2%** | **19.5%** | | `Nexusflow/Starling-LM-7B-beta` | 26.6% | 25.8% | **29.6%** | **26.4%** | | `snorkelai/Snorkel-Mistral-PairRM` | 24.7% | 24.0% | **28.8%** | **26.4%** | | `RLHFlow/LLaMA3-iterative-DPO-final` | 29.2% | 36.0% | **32.7%** | **37.8%** | | `internlm/internlm2-chat-1.8b` | 3.8% | 4.0% | **5.2%** | **4.3%** | | `internlm/internlm2-chat-7b` | 20.5% | 18.3% | **28.1%** | **22.7%** | | `internlm/internlm2-chat-20b` | 36.1% | 24.9% | **46.2%** | **27.2%** | | `allenai/tulu-2-dpo-7b` | 8.5% | 10.2% | **11.5%** | **11.7%** | | `allenai/tulu-2-dpo-13b` | 11.2% | 15.5% | **15.6%** | **17.6%** | | `allenai/tulu-2-dpo-70b` | 15.4% | 21.2% | **23.0%** | **25.7%** | Evaluation results on the **MT-Bench** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_mtbench)): | | Original | + ExPO | | ------------------------------------ | -------- | -------- | | `HuggingFaceH4/zephyr-7b-alpha` | 6.85 | **6.87** | | `HuggingFaceH4/zephyr-7b-beta` | 7.02 | **7.06** | | `berkeley-nest/Starling-LM-7B-alpha` | 7.82 | **7.91** | | `Nexusflow/Starling-LM-7B-beta` | 8.10 | **8.18** | | `snorkelai/Snorkel-Mistral-PairRM` | 7.63 | **7.69** | | `RLHFlow/LLaMA3-iterative-DPO-final` | 8.08 | **8.45** | | `internlm/internlm2-chat-1.8b` | 5.17 | **5.26** | | `internlm/internlm2-chat-7b` | 7.72 | **7.80** | | `internlm/internlm2-chat-20b` | 8.13 | **8.26** | | `allenai/tulu-2-dpo-7b` | 6.35 | **6.38** | | `allenai/tulu-2-dpo-13b` | 7.00 | **7.26** | | `allenai/tulu-2-dpo-70b` | 7.79 | **8.03** |