File size: 6,950 Bytes
bc6ff63
 
 
90d1dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6ff63
 
 
 
d17a71d
bc6ff63
c4b3ce4
 
d3e8342
c4b3ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d1dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
language:
- en
license: apache-2.0
model-index:
- name: Mistral7B-PairRM-SPPO-ExPO
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 36.73
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 13.68
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.91
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.58
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.66
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 17.24
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
      name: Open LLM Leaderboard
---

# Mistral7B-PairRM-SPPO-ExPO

The extrapolated (ExPO) model based on [`UCLA-AGI/Mistral7B-PairRM-SPPO`](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO) and [`mistralai/Mistral-7B-Instruct-v0.2`](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), as in the "[Weak-to-Strong Extrapolation Expedites Alignment](https://arxiv.org/abs/2404.16792)" paper.

Specifically, we obtain this model by extrapolating **(alpha = 0.3)** from the weights of the SFT and DPO/RLHF checkpoints, achieving superior alignment with human preference.

This extrapolated model achieves the **35.4%** win rate and **31.8%** LC win rate on **AlpacaEval 2.0**, outperforming the original `Mistral7B-PairRM-SPPO`'s 32.2% and 30.5%, respectively.

## Evaluation Results

Evaluation results on the **AlpacaEval 2.0** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_alpaca)):

|                                      | Win Rate (Ori) | LC Win Rate (Ori) | Win Rate (+ ExPO) | LC Win Rate (+ ExPO) |
| ------------------------------------ | -------------- | ----------------- | ----------------- | -------------------- |
| `HuggingFaceH4/zephyr-7b-alpha`      | 6.7%           | 10.0%             | **10.6%**         | **13.6%**            |
| `HuggingFaceH4/zephyr-7b-beta`       | 10.2%          | 13.2%             | **11.1%**         | **14.0%**            |
| `berkeley-nest/Starling-LM-7B-alpha` | 15.0%          | 18.3%             | **18.2%**         | **19.5%**            |
| `Nexusflow/Starling-LM-7B-beta`      | 26.6%          | 25.8%             | **29.6%**         | **26.4%**            |
| `snorkelai/Snorkel-Mistral-PairRM`   | 24.7%          | 24.0%             | **28.8%**         | **26.4%**            |
| `RLHFlow/LLaMA3-iterative-DPO-final` | 29.2%          | 36.0%             | **32.7%**         | **37.8%**            |
| `internlm/internlm2-chat-1.8b`       | 3.8%           | 4.0%              | **5.2%**          | **4.3%**             |
| `internlm/internlm2-chat-7b`         | 20.5%          | 18.3%             | **28.1%**         | **22.7%**            |
| `internlm/internlm2-chat-20b`        | 36.1%          | 24.9%             | **46.2%**         | **27.2%**            |
| `allenai/tulu-2-dpo-7b`              | 8.5%           | 10.2%             | **11.5%**         | **11.7%**            |
| `allenai/tulu-2-dpo-13b`             | 11.2%          | 15.5%             | **15.6%**         | **17.6%**            |
| `allenai/tulu-2-dpo-70b`             | 15.4%          | 21.2%             | **23.0%**         | **25.7%**            |

Evaluation results on the **MT-Bench** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_mtbench)):

|                                      | Original | + ExPO   |
| ------------------------------------ | -------- | -------- |
| `HuggingFaceH4/zephyr-7b-alpha`      | 6.85     | **6.87** |
| `HuggingFaceH4/zephyr-7b-beta`       | 7.02     | **7.06** |
| `berkeley-nest/Starling-LM-7B-alpha` | 7.82     | **7.91** |
| `Nexusflow/Starling-LM-7B-beta`      | 8.10     | **8.18** |
| `snorkelai/Snorkel-Mistral-PairRM`   | 7.63     | **7.69** |
| `RLHFlow/LLaMA3-iterative-DPO-final` | 8.08     | **8.45** |
| `internlm/internlm2-chat-1.8b`       | 5.17     | **5.26** |
| `internlm/internlm2-chat-7b`         | 7.72     | **7.80** |
| `internlm/internlm2-chat-20b`        | 8.13     | **8.26** |
| `allenai/tulu-2-dpo-7b`              | 6.35     | **6.38** |
| `allenai/tulu-2-dpo-13b`             | 7.00     | **7.26** |
| `allenai/tulu-2-dpo-70b`             | 7.79     | **8.03** |


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chujiezheng__Mistral7B-PairRM-SPPO-ExPO)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |13.47|
|IFEval (0-Shot)    |36.73|
|BBH (3-Shot)       |13.68|
|MATH Lvl 5 (4-Shot)| 0.91|
|GPQA (0-shot)      | 3.58|
|MuSR (0-shot)      | 8.66|
|MMLU-PRO (5-shot)  |17.24|