File size: 6,950 Bytes
bc6ff63 90d1dc0 bc6ff63 d17a71d bc6ff63 c4b3ce4 d3e8342 c4b3ce4 90d1dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
language:
- en
license: apache-2.0
model-index:
- name: Mistral7B-PairRM-SPPO-ExPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 36.73
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 13.68
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.91
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.58
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.66
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 17.24
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=chujiezheng/Mistral7B-PairRM-SPPO-ExPO
name: Open LLM Leaderboard
---
# Mistral7B-PairRM-SPPO-ExPO
The extrapolated (ExPO) model based on [`UCLA-AGI/Mistral7B-PairRM-SPPO`](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO) and [`mistralai/Mistral-7B-Instruct-v0.2`](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), as in the "[Weak-to-Strong Extrapolation Expedites Alignment](https://arxiv.org/abs/2404.16792)" paper.
Specifically, we obtain this model by extrapolating **(alpha = 0.3)** from the weights of the SFT and DPO/RLHF checkpoints, achieving superior alignment with human preference.
This extrapolated model achieves the **35.4%** win rate and **31.8%** LC win rate on **AlpacaEval 2.0**, outperforming the original `Mistral7B-PairRM-SPPO`'s 32.2% and 30.5%, respectively.
## Evaluation Results
Evaluation results on the **AlpacaEval 2.0** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_alpaca)):
| | Win Rate (Ori) | LC Win Rate (Ori) | Win Rate (+ ExPO) | LC Win Rate (+ ExPO) |
| ------------------------------------ | -------------- | ----------------- | ----------------- | -------------------- |
| `HuggingFaceH4/zephyr-7b-alpha` | 6.7% | 10.0% | **10.6%** | **13.6%** |
| `HuggingFaceH4/zephyr-7b-beta` | 10.2% | 13.2% | **11.1%** | **14.0%** |
| `berkeley-nest/Starling-LM-7B-alpha` | 15.0% | 18.3% | **18.2%** | **19.5%** |
| `Nexusflow/Starling-LM-7B-beta` | 26.6% | 25.8% | **29.6%** | **26.4%** |
| `snorkelai/Snorkel-Mistral-PairRM` | 24.7% | 24.0% | **28.8%** | **26.4%** |
| `RLHFlow/LLaMA3-iterative-DPO-final` | 29.2% | 36.0% | **32.7%** | **37.8%** |
| `internlm/internlm2-chat-1.8b` | 3.8% | 4.0% | **5.2%** | **4.3%** |
| `internlm/internlm2-chat-7b` | 20.5% | 18.3% | **28.1%** | **22.7%** |
| `internlm/internlm2-chat-20b` | 36.1% | 24.9% | **46.2%** | **27.2%** |
| `allenai/tulu-2-dpo-7b` | 8.5% | 10.2% | **11.5%** | **11.7%** |
| `allenai/tulu-2-dpo-13b` | 11.2% | 15.5% | **15.6%** | **17.6%** |
| `allenai/tulu-2-dpo-70b` | 15.4% | 21.2% | **23.0%** | **25.7%** |
Evaluation results on the **MT-Bench** benchmark (you can find the evaluation outputs on the [official GitHub repo](https://github.com/chujiezheng/LLM-Extrapolation/tree/main/results_mtbench)):
| | Original | + ExPO |
| ------------------------------------ | -------- | -------- |
| `HuggingFaceH4/zephyr-7b-alpha` | 6.85 | **6.87** |
| `HuggingFaceH4/zephyr-7b-beta` | 7.02 | **7.06** |
| `berkeley-nest/Starling-LM-7B-alpha` | 7.82 | **7.91** |
| `Nexusflow/Starling-LM-7B-beta` | 8.10 | **8.18** |
| `snorkelai/Snorkel-Mistral-PairRM` | 7.63 | **7.69** |
| `RLHFlow/LLaMA3-iterative-DPO-final` | 8.08 | **8.45** |
| `internlm/internlm2-chat-1.8b` | 5.17 | **5.26** |
| `internlm/internlm2-chat-7b` | 7.72 | **7.80** |
| `internlm/internlm2-chat-20b` | 8.13 | **8.26** |
| `allenai/tulu-2-dpo-7b` | 6.35 | **6.38** |
| `allenai/tulu-2-dpo-13b` | 7.00 | **7.26** |
| `allenai/tulu-2-dpo-70b` | 7.79 | **8.03** |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chujiezheng__Mistral7B-PairRM-SPPO-ExPO)
| Metric |Value|
|-------------------|----:|
|Avg. |13.47|
|IFEval (0-Shot) |36.73|
|BBH (3-Shot) |13.68|
|MATH Lvl 5 (4-Shot)| 0.91|
|GPQA (0-shot) | 3.58|
|MuSR (0-shot) | 8.66|
|MMLU-PRO (5-shot) |17.24|
|