File size: 13,860 Bytes
e744db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""
Train script for a single file

Need to set the TPU address first:
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
"""

import torch.multiprocessing as mp
import threading
import time
import random
import sys
import argparse
import gzip
import json
import logging
import tqdm
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch
import torch_xla
import torch_xla.core
import torch_xla.core.functions
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
import torch_xla.distributed.parallel_loader as pl
import os
from shutil import copyfile


from transformers import (
    AdamW,
    AutoModel,
    AutoTokenizer,
    get_linear_schedule_with_warmup,
    set_seed,
)

class AutoModelForSentenceEmbedding(nn.Module):
    def __init__(self, model_name, tokenizer, args):
        super(AutoModelForSentenceEmbedding, self).__init__()

        assert args.pooling in ['mean', 'cls']

        self.model = AutoModel.from_pretrained(model_name)
        self.normalize = not args.no_normalize
        self.tokenizer = tokenizer
        self.pooling = args.pooling

    def forward(self, **kwargs):
        model_output = self.model(**kwargs)
        if self.pooling == 'mean':
            embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
        elif self.pooling == 'cls':
            embeddings = self.cls_pooling(model_output, kwargs['attention_mask'])

        if self.normalize:
            embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)

        return embeddings

    def mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[0]  # First element of model_output contains all token embeddings
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    def cls_pooling(self, model_output, attention_mask):
        return model_output[0][:,0]

    def save_pretrained(self, output_path):
        if xm.is_master_ordinal():
            self.tokenizer.save_pretrained(output_path)
            self.model.config.save_pretrained(output_path)

        xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
       



def train_function(index, args, queue):
    tokenizer = AutoTokenizer.from_pretrained(args.model)
    model = AutoModelForSentenceEmbedding(args.model, tokenizer, args)
    
  
    ### Train Loop
    device = xm.xla_device()
    model = model.to(device)

    # Instantiate optimizer
    optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)

    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=500,
        num_training_steps=args.steps,
    )
    
    # Now we train the model
    cross_entropy_loss = nn.CrossEntropyLoss()
    max_grad_norm = 1

    model.train()
   
    for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
        #### Get the batch data
        batch = queue.get()
        #print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
        

        if len(batch[0]) == 2: #(anchor, positive)
            text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length_a, truncation=True, padding="max_length")
            text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length")

            ### Compute embeddings
            embeddings_a = model(**text1.to(device))
            embeddings_b = model(**text2.to(device))
            
            ### Gather all embedings 
            embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
            embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)

            ### Compute similarity scores 512 x 512
            scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
        
            ### Compute cross-entropy loss
            labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device)  # Example a[i] should match with b[i]
            
            ## Symmetric loss as in CLIP
            loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2

        else:   #(anchor, positive, negative)
            text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length_a, truncation=True, padding="max_length")
            text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length")
            text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length")

            embeddings_a  = model(**text1.to(device))
            embeddings_b1 = model(**text2.to(device))
            embeddings_b2 = model(**text3.to(device))

            embeddings_a  = torch_xla.core.functions.all_gather(embeddings_a)
            embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
            embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)

            embeddings_b = torch.cat([embeddings_b1, embeddings_b2])

            ### Compute similarity scores 512 x 1024
            scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
        
            ### Compute cross-entropy loss
            labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device)  # Example a[i] should match with b[i]
            
            ## One-way loss
            loss = cross_entropy_loss(scores, labels)

        
        # Backward pass
        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
        
        xm.optimizer_step(optimizer, barrier=True)
        lr_scheduler.step()


        #Save model
        if (global_step+1) % args.save_steps == 0:
            output_path = os.path.join(args.output, str(global_step+1))
            xm.master_print("save model: "+output_path)
            model.save_pretrained(output_path)
          
            
    output_path = os.path.join(args.output, "final")
    xm.master_print("save model final: "+ output_path)
    model.save_pretrained(output_path)


def produce_data(args, queue, filepaths, dataset_indices):
    global_batch_size = args.batch_size*args.nprocs    #Global batch size
    num_same_dataset = int(args.nprocs / args.datasets_per_batch)
    print("producer", "global_batch_size", global_batch_size)
    print("producer", "num_same_dataset", num_same_dataset)
    
    datasets = []
    for filepath in filepaths:
        if "reddit_" in filepath:       #Special dataset class for Reddit files
            data_obj = RedditDataset(filepath)
        else:
            data_obj = Dataset(filepath)
        datasets.append(iter(data_obj)) 
    
    # Store if dataset is in a 2 col or 3 col format
    num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}

    while True:
        texts_in_batch = set()
        batch_format = None     #2 vs 3 col format for this batch
        
        #Add data from several sub datasets
        for _ in range(args.datasets_per_batch):
            valid_dataset = False   #Check that datasets have the same 2/3 col format
            while not valid_dataset:
                data_idx = random.choice(dataset_indices)
                if batch_format is None:
                    batch_format = num_cols[data_idx]
                    valid_dataset = True
                else:   #Check that this dataset has the same format
                    valid_dataset = (batch_format == num_cols[data_idx])
            
            #Get data from this dataset
            dataset = datasets[data_idx]
            local_batch_size = args.batch_size
            if batch_format == 3 and args.batch_size_triplets is not None:
                local_batch_size = args.batch_size_triplets

            for _ in range(num_same_dataset):
                for _ in range(args.nprocs):
                    batch_device = []   #A batch for one device
                    while len(batch_device) < local_batch_size:
                        sample = next(dataset)
                        in_batch = False
                        for text in sample:
                            if text in texts_in_batch:
                                in_batch = True
                                break
                        
                        if not in_batch:
                            for text in sample:
                                texts_in_batch.add(text)
                            batch_device.append(sample)

                    queue.put(batch_device)
                      

class RedditDataset:
    """
    A class that handles the reddit data files
    """
    def __init__(self, filepath):
        self.filepath = filepath

    def __iter__(self):
        while True:
            with gzip.open(self.filepath, "rt") as fIn:
                    for line in fIn:
                        data = json.loads(line)

                        if "response" in data and "context" in data:
                            yield [data["response"], data["context"]]

class Dataset:
    """
    A class that handles one dataset
    """
    def __init__(self, filepath):
        self.filepath = filepath

    def __iter__(self):
        max_dataset_size = 20*1000*1000    #Cache small datasets in memory
        dataset = []
        data_format = None

        while dataset is None or len(dataset) == 0:
            with gzip.open(self.filepath, "rt") as fIn:
                for line in fIn:
                    data = json.loads(line)
                    if isinstance(data, dict):
                        data = data['texts']

                    if data_format is None:
                        data_format = len(data)
                    
                    #Ensure that all entries are of the same 2/3 col format
                    assert len(data) == data_format

                    if dataset is not None:
                        dataset.append(data)
                        if len(dataset) >= max_dataset_size:
                            dataset = None

                    yield data
                
        # Data loaded. Now stream to the queue
        # Shuffle for each epoch
        while True:
            random.shuffle(dataset)
            for data in dataset:
                yield data
                
               

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
    parser.add_argument('--steps', type=int, default=2000)
    parser.add_argument('--save_steps', type=int, default=10000)
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--batch_size_triplets', type=int, default=None)
    parser.add_argument('--max_length_a', type=int, default=128)
    parser.add_argument('--max_length_b', type=int, default=128)
    parser.add_argument('--nprocs', type=int, default=8)
    parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
    parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
    parser.add_argument('--no_normalize', action="store_true", default=False, help="If set: Embeddings are not normalized")
    parser.add_argument('--pooling', default='mean')
    parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
    parser.add_argument('data_config', help="A data_config.json file")
    parser.add_argument('output')
    args = parser.parse_args()

    # Ensure num proc is devisible by datasets_per_batch
    assert (args.nprocs % args.datasets_per_batch) == 0
  

    logging.info("Output: "+args.output)
    if os.path.exists(args.output):
        print("Output folder already exists.")
        input("Continue?")

    # Write train script to output path
    os.makedirs(args.output, exist_ok=True)

    data_config_path = os.path.join(args.output, 'data_config.json')
    copyfile(args.data_config, data_config_path)

    train_script_path = os.path.join(args.output, 'train_script.py')
    copyfile(__file__, train_script_path)
    with open(train_script_path, 'a') as fOut:
        fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))



    #Load data config
    with open(args.data_config) as fIn:
        data_config = json.load(fIn)

    queue = mp.Queue(maxsize=100*args.nprocs)
    
    filepaths = []
    dataset_indices = []
    for idx, data in enumerate(data_config):
        filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
        dataset_indices.extend([idx]*data['weight'])

    # Start producer
    p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
    p.start()

    # Run training
    print("Start processes:", args.nprocs)
    xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
    print("Training done")
    print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
    print("With 'pkill python' you can kill all remaining python processes")
    p.kill()
    exit()



# Script was called via:
#python train_many_data_files_v2.py --steps 200000 --batch_size 80 --batch_size_triplets 40 --model microsoft/mpnet-base --max_length_a 64 --max_length_b 250 train_data_configs/multi-qa_v1.json output/multi-qa_v1-mpnet-base-mean_cos