The App
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import torch
|
3 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
+
|
5 |
+
dataset = datasets.load_dataset('beans')
|
6 |
+
|
7 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("saved_model_files")
|
8 |
+
model = AutoModelForImageClassification.from_pretrained("saved_model_files")
|
9 |
+
|
10 |
+
labels = dataset['train'].features['labels'].names
|
11 |
+
|
12 |
+
def classify(im):
|
13 |
+
features = feature_extractor(im, return_tensors='pt')
|
14 |
+
logits = model(features["pixel_values"])[-1]
|
15 |
+
probability = torch.nn.functional.softmax(logits, dim=-1)
|
16 |
+
probs = probability[0].detach().numpy()
|
17 |
+
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
|
18 |
+
return confidences
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
|
22 |
+
Instruction = "Submit bean-leaf images with different leaf conditions"
|
23 |
+
title="Bean-leaf-disease Image classification demo"
|
24 |
+
description = "Drop an Input image to classify, Observe the model prediction across 3 distinct categories."
|
25 |
+
article = """
|
26 |
+
- Select an image from the examples provided as demo image
|
27 |
+
- Click submit button to make Image classification
|
28 |
+
- Click clear button to try new Image for classification
|
29 |
+
"""
|
30 |
+
|
31 |
+
interface = gr.Interface(
|
32 |
+
classify,
|
33 |
+
inputs='image',
|
34 |
+
outputs='label',
|
35 |
+
instructuction = Instruction,
|
36 |
+
title = title,
|
37 |
+
description = description,
|
38 |
+
article = article,
|
39 |
+
examples=["image1.jpg",
|
40 |
+
"image2.jpg",
|
41 |
+
"image3.jpg",
|
42 |
+
"image4.jpg"]
|
43 |
+
)
|
44 |
+
|
45 |
+
interface.launch(debug=True)
|