cjpais commited on
Commit
e6cf8b0
1 Parent(s): 4a717ca

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # GGUF Quantized LLaVA 1.6 Mistral 7B
6
+
7
+ ## Provided files
8
+ | Name | Quant method | Bits | Size | Use case |
9
+ | ---- | ---- | ---- | ---- | ----- |
10
+ | [llava-v1.6-mistral-7b.Q3_K_XS.gguf](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/capybarahermes-2.5-mistral-7b.Q2_K.gguf) | Q3_K_XS | 2 | 2.99 GB| very small, high quality loss |
11
+ | [llava-v1.6-mistral-7b.Q3_K_M.gguf](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/capybarahermes-2.5-mistral-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| very small, high quality loss |
12
+ | [llava-v1.6-mistral-7b.Q4_K_M.gguf](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/capybarahermes-2.5-mistral-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| medium, balanced quality - recommended |
13
+ | [llava-v1.6-mistral-7b.Q5_K_S.gguf](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/capybarahermes-2.5-mistral-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| large, low quality loss - recommended |
14
+ | [llava-v1.6-mistral-7b.Q5_K_M.gguf](https://huggingface.co/cjpais/llava-1.6-mistral-7b-gguf/blob/main/capybarahermes-2.5-mistral-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| large, very low quality loss - recommended |
15
+
16
+ <br>
17
+ <br>
18
+
19
+ # ORIGINAL LLaVA Model Card
20
+
21
+ ## Model details
22
+
23
+ **Model type:**
24
+ LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data.
25
+ It is an auto-regressive language model, based on the transformer architecture.
26
+ Base LLM: [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
27
+
28
+ **Model date:**
29
+ LLaVA-v1.6-Mistral-7B was trained in December 2023.
30
+
31
+ **Paper or resources for more information:**
32
+ https://llava-vl.github.io/
33
+
34
+ ## License
35
+ [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) license.
36
+
37
+ **Where to send questions or comments about the model:**
38
+ https://github.com/haotian-liu/LLaVA/issues
39
+
40
+ ## Intended use
41
+ **Primary intended uses:**
42
+ The primary use of LLaVA is research on large multimodal models and chatbots.
43
+
44
+ **Primary intended users:**
45
+ The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
46
+
47
+ ## Training dataset
48
+ - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
49
+ - 158K GPT-generated multimodal instruction-following data.
50
+ - 500K academic-task-oriented VQA data mixture.
51
+ - 50K GPT-4V data mixture.
52
+ - 40K ShareGPT data.
53
+
54
+ ## Evaluation dataset
55
+ A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.