--- base_model: bert-base-uncased license: apache-2.0 metrics: - accuracy - f1 - precision - recall tags: - generated_from_trainer model-index: - name: bert-base-uncased-amazon-reviews-sentiment-analysis results: [] --- # bert-base-uncased-amazon-reviews-sentiment-analysis This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2344 - Accuracy: 0.9198 - F1: 0.9215 - Precision: 0.9263 - Recall: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6741 | 1.0 | 47 | 0.6232 | 0.7594 | 0.7097 | 0.9322 | 0.5729 | | 0.4346 | 2.0 | 94 | 0.3871 | 0.8717 | 0.875 | 0.875 | 0.875 | | 0.3593 | 3.0 | 141 | 0.2344 | 0.9198 | 0.9215 | 0.9263 | 0.9167 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1