File size: 1,586 Bytes
71981d1 0908b3d 71981d1 0908b3d 71981d1 0908b3d 904728d 0908b3d 71981d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.23 +/- 17.90
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
A trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
```python
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from huggingface_sb3 import load_from_hub
# Download the model checkpoint
model_checkpoint = load_from_hub("ckandemir/ppo-LunarLander-v2", "ppo-LunarLander-v2.zip")
# Create a vectorized environment
env = make_vec_env("LunarLander-v2", n_envs=1)
# Load the model
model = PPO.load(model_checkpoint, env=env)
# Evaluate
print("Evaluating model")
mean_reward, std_reward = evaluate_policy(
model,
env,
n_eval_episodes=10,
deterministic=True,
)
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward}")
# Start a new episode
obs = env.reset()
try:
while True:
action, state = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
env.render()
except KeyboardInterrupt:
pass
```
|