File size: 33,451 Bytes
f5dae74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
# coding=utf-8

# Copyright 2023 LINE Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Almost copied from [transformers.BertJapaneseTokenizer](https://github.com/huggingface/transformers/blob/v4.26.1/src/transformers/models/bert_japanese/tokenization_bert_japanese.py#)
# This code is distributed under the Apache License 2.0.

"""Tokenization classes."""


import collections
import copy
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple

from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from transformers.utils import is_sentencepiece_available, logging

try:
    import sentencepiece as spm
except ModuleNotFoundError as error:
    raise error.__class__(
        "The sentencepiece is not installed. "
        "See https://github.com/google/sentencepiece for installation."
    )



logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}

SPIECE_UNDERLINE = "▁"

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt",
        "cl-tohoku/bert-base-japanese-whole-word-masking": (
            "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt"
        ),
        "cl-tohoku/bert-base-japanese-char": (
            "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt"
        ),
        "cl-tohoku/bert-base-japanese-char-whole-word-masking": (
            "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt"
        ),
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "cl-tohoku/bert-base-japanese": 512,
    "cl-tohoku/bert-base-japanese-whole-word-masking": 512,
    "cl-tohoku/bert-base-japanese-char": 512,
    "cl-tohoku/bert-base-japanese-char-whole-word-masking": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "cl-tohoku/bert-base-japanese": {
        "do_lower_case": False,
        "word_tokenizer_type": "mecab",
        "subword_tokenizer_type": "wordpiece",
    },
    "cl-tohoku/bert-base-japanese-whole-word-masking": {
        "do_lower_case": False,
        "word_tokenizer_type": "mecab",
        "subword_tokenizer_type": "wordpiece",
    },
    "cl-tohoku/bert-base-japanese-char": {
        "do_lower_case": False,
        "word_tokenizer_type": "mecab",
        "subword_tokenizer_type": "character",
    },
    "cl-tohoku/bert-base-japanese-char-whole-word-masking": {
        "do_lower_case": False,
        "word_tokenizer_type": "mecab",
        "subword_tokenizer_type": "character",
    },
}


# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


class DistilBertJapaneseTokenizer(PreTrainedTokenizer):
    r"""
    Construct a BERT tokenizer for Japanese text.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
    to: this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            Path to a one-wordpiece-per-line vocabulary file.
        spm_file (`str`, *optional*):
            Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
            extension) that contains the vocabulary.
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
        do_word_tokenize (`bool`, *optional*, defaults to `True`):
            Whether to do word tokenization.
        do_subword_tokenize (`bool`, *optional*, defaults to `True`):
            Whether to do subword tokenization.
        word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
            Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
        subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
            Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
        mecab_kwargs (`dict`, *optional*):
            Dictionary passed to the `MecabTokenizer` constructor.
        sudachi_kwargs (`dict`, *optional*):
            Dictionary passed to the `SudachiTokenizer` constructor.
        jumanpp_kwargs (`dict`, *optional*):
            Dictionary passed to the `JumanppTokenizer` constructor.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names  = [ "input_ids" , "attention_mask" ]

    def __init__(
        self,
        vocab_file,
        spm_file=None,
        do_lower_case=False,
        do_word_tokenize=True,
        do_subword_tokenize=True,
        word_tokenizer_type="basic",
        subword_tokenizer_type="wordpiece",
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        mecab_kwargs=None,
        sudachi_kwargs=None,
        jumanpp_kwargs=None,
        **kwargs
    ):
        if subword_tokenizer_type == "sentencepiece":
            if not os.path.isfile(spm_file):
                raise ValueError(
                    f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
                    " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                )
            self.spm_file = spm_file
        else:
            if not os.path.isfile(vocab_file):
                raise ValueError(
                    f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
                    " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                )
            self.vocab = load_vocab(vocab_file)
            self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])

        self.do_word_tokenize = do_word_tokenize
        self.word_tokenizer_type = word_tokenizer_type
        self.lower_case = do_lower_case
        self.never_split = never_split
        self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
        self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
        self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
        if do_word_tokenize:
            if word_tokenizer_type == "basic":
                self.word_tokenizer = BasicTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
                )
            elif word_tokenizer_type == "mecab":
                self.word_tokenizer = MecabTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
                )
            elif word_tokenizer_type == "sudachi":
                self.word_tokenizer = SudachiTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
                )
            elif word_tokenizer_type == "jumanpp":
                self.word_tokenizer = JumanppTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
                )
            else:
                raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")

        self.do_subword_tokenize = do_subword_tokenize
        self.subword_tokenizer_type = subword_tokenizer_type
        if do_subword_tokenize:
            if subword_tokenizer_type == "wordpiece":
                self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
            elif subword_tokenizer_type == "character":
                self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=str(unk_token))
            elif subword_tokenizer_type == "sentencepiece":
                self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=str(unk_token))
            else:
                raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")

        super().__init__(
            spm_file=spm_file,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            do_lower_case=do_lower_case,
            do_word_tokenize=do_word_tokenize,
            do_subword_tokenize=do_subword_tokenize,
            word_tokenizer_type=word_tokenizer_type,
            subword_tokenizer_type=subword_tokenizer_type,
            never_split=never_split,
            mecab_kwargs=mecab_kwargs,
            sudachi_kwargs=sudachi_kwargs,
            jumanpp_kwargs=jumanpp_kwargs,
            **kwargs,
        )

    @property
    def do_lower_case(self):
        return self.lower_case

    def __getstate__(self):
        state = dict(self.__dict__)
        if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
            del state["word_tokenizer"]
        return state

    def __setstate__(self, state):
        self.__dict__ = state
        if self.word_tokenizer_type == "mecab":
            self.word_tokenizer = MecabTokenizer(
                do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
            )
        elif self.word_tokenizer_type == "sudachi":
            self.word_tokenizer = SudachiTokenizer(
                do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
            )
        elif self.word_tokenizer_type == "jumanpp":
            self.word_tokenizer = JumanppTokenizer(
                do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
            )

    def _tokenize(self, text):
        if self.do_word_tokenize:
            tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
        else:
            tokens = [text]

        if self.do_subword_tokenize:
            split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
        else:
            split_tokens = tokens

        return split_tokens

    @property
    def vocab_size(self):
        if self.subword_tokenizer_type == "sentencepiece":
            return len(self.subword_tokenizer.sp_model)
        return len(self.vocab)

    def get_vocab(self):
        if self.subword_tokenizer_type == "sentencepiece":
            vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
            vocab.update(self.added_tokens_encoder)
            return vocab
        return dict(self.vocab, **self.added_tokens_encoder)

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        if self.subword_tokenizer_type == "sentencepiece":
            return self.subword_tokenizer.sp_model.PieceToId(token)
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        if self.subword_tokenizer_type == "sentencepiece":
            return self.subword_tokenizer.sp_model.IdToPiece(index)
        return self.ids_to_tokens.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        if self.subword_tokenizer_type == "sentencepiece":
            return self.subword_tokenizer.sp_model.decode(tokens)
        out_string = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A BERT sequence has the following format:

        - single sequence: `[CLS] X [SEP]`
        - pair of sequences: `[CLS] A [SEP] B [SEP]`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + token_ids_1 + sep

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]

    # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
        pair mask has the following format:

        ```
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |
        ```

        If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if os.path.isdir(save_directory):
            if self.subword_tokenizer_type == "sentencepiece":
                vocab_file = os.path.join(
                    save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
                )
            else:
                vocab_file = os.path.join(
                    save_directory,
                    (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
                )
        else:
            vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory

        if self.subword_tokenizer_type == "sentencepiece":
            with open(vocab_file, "wb") as writer:
                content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
                writer.write(content_spiece_model)
        else:
            with open(vocab_file, "w", encoding="utf-8") as writer:
                index = 0
                for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                    if index != token_index:
                        logger.warning(
                            f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
                            " Please check that the vocabulary is not corrupted!"
                        )
                        index = token_index
                    writer.write(token + "\n")
                    index += 1
        return (vocab_file,)


class MecabTokenizer:
    """Runs basic tokenization with MeCab morphological parser."""

    def __init__(
        self,
        do_lower_case=False,
        never_split=None,
        normalize_text=True,
        mecab_dic: Optional[str] = "unidic_lite",
        mecab_option: Optional[str] = None,
    ):
        """
        Constructs a MecabTokenizer.

        Args:
            **do_lower_case**: (*optional*) boolean (default True)
                Whether to lowercase the input.
            **never_split**: (*optional*) list of str
                Kept for backward compatibility purposes. Now implemented directly at the base class level (see
                [`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
            **normalize_text**: (*optional*) boolean (default True)
                Whether to apply unicode normalization to text before tokenization.
            **mecab_dic**: (*optional*) string (default "unidic_lite")
                Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
                set this option to `None` and modify *mecab_option*.
            **mecab_option**: (*optional*) string
                String passed to MeCab constructor.
        """
        self.do_lower_case = do_lower_case
        self.never_split = never_split if never_split is not None else []
        self.normalize_text = normalize_text

        try:
            import fugashi
        except ModuleNotFoundError as error:
            raise error.__class__(
                "You need to install fugashi to use MecabTokenizer. "
                "See https://pypi.org/project/fugashi/ for installation."
            )

        mecab_option = mecab_option or ""

        if mecab_dic is not None:
            if mecab_dic == "unidic_lite":
                try:
                    import unidic_lite
                except ModuleNotFoundError as error:
                    raise error.__class__(
                        "The unidic_lite dictionary is not installed. "
                        "See https://github.com/polm/unidic-lite for installation."
                    )

                dic_dir = unidic_lite.DICDIR
            else:
                raise ValueError("Invalid mecab_dic is specified.")

            mecabrc = os.path.join(dic_dir, "mecabrc")
            mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option

        self.mecab = fugashi.GenericTagger(mecab_option)

    def tokenize(self, text, never_split=None, **kwargs):
        """Tokenizes a piece of text."""
        if self.normalize_text:
            text = unicodedata.normalize("NFKC", text)

        never_split = self.never_split + (never_split if never_split is not None else [])
        tokens = []

        for word in self.mecab(text):
            token = word.surface

            if self.do_lower_case and token not in never_split:
                token = token.lower()

            tokens.append(token)

        return tokens


class CharacterTokenizer:
    """Runs Character tokenization."""

    def __init__(self, vocab, unk_token, normalize_text=True):
        """
        Constructs a CharacterTokenizer.

        Args:
            **vocab**:
                Vocabulary object.
            **unk_token**: str
                A special symbol for out-of-vocabulary token.
            **normalize_text**: (`optional`) boolean (default True)
                Whether to apply unicode normalization to text before tokenization.
        """
        self.vocab = vocab
        self.unk_token = unk_token
        self.normalize_text = normalize_text

    def tokenize(self, text):
        """
        Tokenizes a piece of text into characters.

        For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.

        Args:
            text: A single token or whitespace separated tokens.
                This should have already been passed through *BasicTokenizer*.

        Returns:
            A list of characters.
        """
        if self.normalize_text:
            text = unicodedata.normalize("NFKC", text)

        output_tokens = []
        for char in text:
            if char not in self.vocab:
                output_tokens.append(self.unk_token)
                continue

            output_tokens.append(char)

        return output_tokens


# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
    """
    Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).

    Args:
        do_lower_case (`bool`, *optional*, defaults to `True`):
            Whether or not to lowercase the input when tokenizing.
        never_split (`Iterable`, *optional*):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            `do_basic_tokenize=True`
        tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
            Whether or not to tokenize Chinese characters.

            This should likely be deactivated for Japanese (see this
            [issue](https://github.com/huggingface/transformers/issues/328)).
        strip_accents (`bool`, *optional*):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for `lowercase` (as in the original BERT).
    """

    def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
        if never_split is None:
            never_split = []
        self.do_lower_case = do_lower_case
        self.never_split = set(never_split)
        self.tokenize_chinese_chars = tokenize_chinese_chars
        self.strip_accents = strip_accents

    def tokenize(self, text, never_split=None):
        """
        Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
        WordPieceTokenizer.

        Args:
            never_split (`List[str]`, *optional*)
                Kept for backward compatibility purposes. Now implemented directly at the base class level (see
                [`PreTrainedTokenizer.tokenize`]) List of token not to split.
        """
        # union() returns a new set by concatenating the two sets.
        never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        if self.tokenize_chinese_chars:
            text = self._tokenize_chinese_chars(text)
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if token not in never_split:
                if self.do_lower_case:
                    token = token.lower()
                    if self.strip_accents is not False:
                        token = self._run_strip_accents(token)
                elif self.strip_accents:
                    token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token, never_split))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text, never_split=None):
        """Splits punctuation on a piece of text."""
        if never_split is not None and text in never_split:
            return [text]
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if (
            (cp >= 0x4E00 and cp <= 0x9FFF)
            or (cp >= 0x3400 and cp <= 0x4DBF)  #
            or (cp >= 0x20000 and cp <= 0x2A6DF)  #
            or (cp >= 0x2A700 and cp <= 0x2B73F)  #
            or (cp >= 0x2B740 and cp <= 0x2B81F)  #
            or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
        ):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xFFFD or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """
        Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
        tokenization using the given vocabulary.

        For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.

        Args:
            text: A single token or whitespace separated tokens. This should have
                already been passed through *BasicTokenizer*.

        Returns:
            A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


class SentencepieceTokenizer(object):
    """
    Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
    """

    def __init__(
        self,
        vocab,
        unk_token,
        do_lower_case=False,
        remove_space=True,
        keep_accents=True,
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
    ):
        self.vocab = vocab
        self.unk_token = unk_token
        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents

        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(self.vocab)

    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = " ".join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if not self.keep_accents:
            outputs = unicodedata.normalize("NFKD", outputs)
            outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

    def tokenize(self, text):
        """
        Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
        Tokenization needs the given vocabulary.

        Args:
            text: A string needs to be tokenized.

        Returns:
            A list of sentencepiece tokens.
        """
        text = self.preprocess_text(text)
        pieces = self.sp_model.encode(text, out_type=str)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        return new_pieces