Update README.md
Browse files
README.md
CHANGED
@@ -11,197 +11,112 @@ pipeline_tag: text-classification
|
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
|
20 |
## Model Details
|
21 |
|
22 |
### Model Description
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
<!-- Provide a longer summary of what this model is. -->
|
25 |
-
|
26 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
27 |
-
|
28 |
-
- **Developed by:** [More Information Needed]
|
29 |
-
- **Funded by [optional]:** [More Information Needed]
|
30 |
-
- **Shared by [optional]:** [More Information Needed]
|
31 |
-
- **Model type:** [More Information Needed]
|
32 |
-
- **Language(s) (NLP):** [More Information Needed]
|
33 |
-
- **License:** [More Information Needed]
|
34 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
### Model Sources [optional]
|
37 |
-
|
38 |
-
<!-- Provide the basic links for the model. -->
|
39 |
-
|
40 |
-
- **Repository:** [More Information Needed]
|
41 |
-
- **Paper [optional]:** [More Information Needed]
|
42 |
-
- **Demo [optional]:** [More Information Needed]
|
43 |
-
|
44 |
-
## Uses
|
45 |
-
|
46 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
47 |
-
|
48 |
-
### Direct Use
|
49 |
-
|
50 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
51 |
-
|
52 |
-
[More Information Needed]
|
53 |
-
|
54 |
-
### Downstream Use [optional]
|
55 |
-
|
56 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
### Out-of-Scope Use
|
61 |
-
|
62 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
63 |
-
|
64 |
-
[More Information Needed]
|
65 |
-
|
66 |
-
## Bias, Risks, and Limitations
|
67 |
-
|
68 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
69 |
-
|
70 |
-
[More Information Needed]
|
71 |
-
|
72 |
-
### Recommendations
|
73 |
-
|
74 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
75 |
-
|
76 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
77 |
-
|
78 |
-
## How to Get Started with the Model
|
79 |
-
|
80 |
-
Use the code below to get started with the model.
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
## Training Details
|
85 |
|
86 |
-
### Training Data
|
87 |
-
|
88 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
### Training Procedure
|
93 |
-
|
94 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
95 |
-
|
96 |
-
#### Preprocessing [optional]
|
97 |
-
|
98 |
-
[More Information Needed]
|
99 |
-
|
100 |
-
|
101 |
-
#### Training Hyperparameters
|
102 |
-
|
103 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
104 |
-
|
105 |
-
#### Speeds, Sizes, Times [optional]
|
106 |
-
|
107 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
108 |
-
|
109 |
-
[More Information Needed]
|
110 |
-
|
111 |
-
## Evaluation
|
112 |
-
|
113 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
114 |
-
|
115 |
-
### Testing Data, Factors & Metrics
|
116 |
-
|
117 |
-
#### Testing Data
|
118 |
-
|
119 |
-
<!-- This should link to a Dataset Card if possible. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Factors
|
124 |
-
|
125 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
#### Metrics
|
130 |
-
|
131 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
132 |
-
|
133 |
-
[More Information Needed]
|
134 |
-
|
135 |
-
### Results
|
136 |
-
|
137 |
-
[More Information Needed]
|
138 |
-
|
139 |
-
#### Summary
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
## Model Examination [optional]
|
144 |
-
|
145 |
-
<!-- Relevant interpretability work for the model goes here -->
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
-
|
149 |
-
## Environmental Impact
|
150 |
-
|
151 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
152 |
-
|
153 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
154 |
-
|
155 |
-
- **Hardware Type:** [More Information Needed]
|
156 |
-
- **Hours used:** [More Information Needed]
|
157 |
-
- **Cloud Provider:** [More Information Needed]
|
158 |
-
- **Compute Region:** [More Information Needed]
|
159 |
-
- **Carbon Emitted:** [More Information Needed]
|
160 |
-
|
161 |
-
## Technical Specifications [optional]
|
162 |
-
|
163 |
-
### Model Architecture and Objective
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
### Compute Infrastructure
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
#### Hardware
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
#### Software
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
## Citation [optional]
|
180 |
-
|
181 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
182 |
-
|
183 |
-
**BibTeX:**
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
**APA:**
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## Glossary [optional]
|
192 |
-
|
193 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## More Information [optional]
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
|
205 |
-
|
|
|
206 |
|
207 |
-
|
|
|
|
11 |
license: apache-2.0
|
12 |
---
|
13 |
|
14 |
+
# Ruri-Reranker: Japanese General Reranker
|
15 |
+
|
16 |
+
|
17 |
+
## Usage
|
18 |
+
|
19 |
+
### Direct Usage (Sentence Transformers)
|
20 |
+
|
21 |
+
First install the Sentence Transformers library:
|
22 |
+
|
23 |
+
```bash
|
24 |
+
pip install -U sentence-transformers
|
25 |
+
```
|
26 |
+
|
27 |
+
Then you can load this model and run inference.
|
28 |
+
|
29 |
+
```python
|
30 |
+
from sentence_transformers import CrossEncoder
|
31 |
+
|
32 |
+
# Download from the 🤗 Hub
|
33 |
+
model = CrossEncoder("cl-nagoya/ruri-reranker-small", trust_remote_code=True)
|
34 |
+
|
35 |
+
inputs = [
|
36 |
+
[
|
37 |
+
"瑠璃色はどんな色?",
|
38 |
+
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
|
39 |
+
],
|
40 |
+
[
|
41 |
+
"瑠璃色はどんな色?",
|
42 |
+
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
|
43 |
+
],
|
44 |
+
[
|
45 |
+
"ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
|
46 |
+
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
|
47 |
+
],
|
48 |
+
[
|
49 |
+
"ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
|
50 |
+
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
|
51 |
+
],
|
52 |
+
]
|
53 |
+
|
54 |
+
scores = model.predict(inputs)
|
55 |
+
print(scores)
|
56 |
+
# [0.9999534 0.02577114 0.98103124 0.00387013]
|
57 |
+
|
58 |
+
result = model.rank(
|
59 |
+
query="瑠璃色はどんな色?",
|
60 |
+
documents=[
|
61 |
+
"ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
|
62 |
+
"瑠璃、または琉璃(るり)は、仏教の七宝の一つ。サンスクリットの vaiḍūrya またはそのプラークリット形の音訳である。金緑石のこととも、ラピスラズリであるともいう[1]。",
|
63 |
+
"瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
|
64 |
+
],
|
65 |
+
)
|
66 |
+
print(result)
|
67 |
+
# [
|
68 |
+
# {'corpus_id': 2, 'score': 0.9999534},
|
69 |
+
# {'corpus_id': 1, 'score': 0.6785002},
|
70 |
+
# {'corpus_id': 0, 'score': 0.025771141},
|
71 |
+
# ]
|
72 |
+
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
## Benchmarks
|
77 |
+
|
78 |
+
|
79 |
+
|Model|#Param.(w/oEmb.)|JQaRA|JaCWIR|MIRACL|
|
80 |
+
|:-:|:-:|:-:|:-:|:-:|
|
81 |
+
|[hotchpotch/japanese-reranker-cross-encoder-xsmall-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-xsmall-v1)|107M(11M)|61.4|93.8|90.6|
|
82 |
+
|[hotchpotch/japanese-reranker-cross-encoder-small-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-small-v1)|118M(21M)|62.5|93.9|92.2|
|
83 |
+
|[hotchpotch/japanese-reranker-cross-encoder-base-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-base-v1)|111M(86M)|67.1|93.4|93.3|
|
84 |
+
|[hotchpotch/japanese-reranker-cross-encoder-large-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-large-v1)|337M(303M)|71.0|93.6|91.5|
|
85 |
+
|[hotchpotch/japanese-bge-reranker-v2-m3-v1](https://huggingface.co/hotchpotch/japanese-bge-reranker-v2-m3-v1)|568M(303M)|69.2|93.7|94.7|
|
86 |
+
|[BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3)|568M(303M)|67.3|93.4|94.9|
|
87 |
+
|-----------------------------------------------|-------------------|------|-------|-------|
|
88 |
+
|[**Ruri-Reranker-Small**](https://huggingface.co/cl-nagoya/ruri-reranker-small)|68M(43M)|64.5|92.6|92.3|
|
89 |
+
|[Ruri-Reranker-Base](https://huggingface.co/cl-nagoya/ruri-reranker-base)|111M(86M)|74.3|93.5|95.6|
|
90 |
+
|[Ruri-Reranker-Large](https://huggingface.co/cl-nagoya/ruri-reranker-large)|337M(303M)|**77.1**|**94.1**|**96.1**|
|
91 |
|
92 |
|
93 |
|
94 |
## Model Details
|
95 |
|
96 |
### Model Description
|
97 |
+
- **Model Type:** Sentence Transformer
|
98 |
+
- **Base model:** [cl-nagoya/ruri-reranker-stage1-small](https://huggingface.co/cl-nagoya/ruri-reranker-stage1-small)
|
99 |
+
- **Maximum Sequence Length:** 512 tokens
|
100 |
+
- **Language:** Japanese
|
101 |
+
- **License:** Apache 2.0
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
## Training Details
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
### Framework Versions
|
108 |
+
- Python: 3.10.13
|
109 |
+
- Sentence Transformers: 3.0.0
|
110 |
+
- Transformers: 4.41.2
|
111 |
+
- PyTorch: 2.3.1+cu118
|
112 |
+
- Accelerate: 0.30.1
|
113 |
+
- Datasets: 2.19.1
|
114 |
+
- Tokenizers: 0.19.1
|
115 |
|
116 |
+
<!-- ## Citation
|
117 |
|
118 |
+
### BibTeX
|
119 |
+
-->
|
120 |
|
121 |
+
## License
|
122 |
+
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|