--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: modernBERT-base-multilingual-sentiment results: [] --- # modernBERT-base-multilingual-sentiment This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8330 - F1: 0.1291 - Precision: 0.1650 - Recall: 0.1890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2048 - total_eval_batch_size: 2048 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 1.8373 | 1.0 | 8 | 1.8330 | 0.1291 | 0.1650 | 0.1890 | | 1.8364 | 2.0 | 16 | 1.8330 | 0.1291 | 0.1650 | 0.1890 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0