--- library_name: peft license: cc-by-nc-4.0 base_model: tlphams/gollm-12.8b-instruct-v2.3 tags: - axolotl - generated_from_trainer model-index: - name: c3503b8e-fd6d-423d-8aa5-defe0e920fe7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: tlphams/gollm-12.8b-instruct-v2.3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9c0bcf9157425366_train_data.json ds_type: json format: custom path: /workspace/input_data/9c0bcf9157425366_train_data.json type: field_input: privacy_mask field_instruction: masked_text field_output: unmasked_text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: clarxus/c3503b8e-fd6d-423d-8aa5-defe0e920fe7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 600 micro_batch_size: 8 mlflow_experiment_name: /tmp/9c0bcf9157425366_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: af7f45c5-8aaf-4879-94c4-bd1a96de8b10 wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: af7f45c5-8aaf-4879-94c4-bd1a96de8b10 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# c3503b8e-fd6d-423d-8aa5-defe0e920fe7 This model is a fine-tuned version of [tlphams/gollm-12.8b-instruct-v2.3](https://huggingface.co/tlphams/gollm-12.8b-instruct-v2.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.4986 | | 0.0261 | 0.0081 | 50 | 0.0084 | | 0.0178 | 0.0161 | 100 | 0.0044 | | 0.0141 | 0.0242 | 150 | 0.0031 | | 0.0087 | 0.0322 | 200 | 0.0029 | | 0.0111 | 0.0403 | 250 | 0.0028 | | 0.0071 | 0.0483 | 300 | 0.0021 | | 0.0085 | 0.0564 | 350 | 0.0022 | | 0.0095 | 0.0644 | 400 | 0.0017 | | 0.0079 | 0.0725 | 450 | 0.0016 | | 0.0066 | 0.0805 | 500 | 0.0014 | | 0.0039 | 0.0886 | 550 | 0.0014 | | 0.0057 | 0.0966 | 600 | 0.0014 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1