File size: 3,497 Bytes
f5a796d 5c137d1 0c41462 f5a796d 7337921 f5a796d b2096e2 b87fcd9 a36b8e8 b87fcd9 9462040 b87fcd9 05e2c70 84c7eb5 b87fcd9 840afdc b87fcd9 05e2c70 84c7eb5 b87fcd9 840afdc cde7fe0 8e1fe7d cde7fe0 8e1fe7d cde7fe0 8e1fe7d cde7fe0 b2096e2 99fd4de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language: "sl"
license: "cc-by-sa-4.0"
tags:
- text-classification
- hate-speech
widget:
- text: "Silva, ti si grda in neprijazna"
---
Text classification model based on `EMBEDDIA/sloberta` and fine-tuned on the [FRENK dataset](https://www.clarin.si/repository/xmlui/handle/11356/1433) comprising of LGBT and migrant hatespeech. Only the slovenian subset of the data was used for fine-tuning and the dataset has been relabeled for binary classification (offensive or acceptable).
## Fine-tuning hyperparameters
Fine-tuning was performed with `simpletransformers`. Beforehand a brief hyperparameter optimisation was performed and the presumed optimal hyperparameters are:
```python
model_args = {
"num_train_epochs": 14,
"learning_rate": 1e-5,
"train_batch_size": 21,
}
```
## Performance
The same pipeline was run with two other transformer models and `fasttext` for comparison. Accuracy and macro F1 score were recorded for each of the 6 fine-tuning sessions and post festum analyzed.
| model | average accuracy | average macro F1|
|---|---|---|
|sloberta-frenk-hate|0.7785|0.7764|
|EMBEDDIA/crosloengual-bert |0.7616|0.7585|
|xlm-roberta-base |0.686|0.6827|
|fasttext|0.709 |0.701 |
From recorded accuracies and macro F1 scores p-values were also calculated:
Comparison with `crosloengual-bert`:
| test | accuracy p-value | macro F1 p-value|
| --- | --- | --- |
|Wilcoxon|0.00781|0.00781|
|Mann Whithney U test|0.00163|0.00108|
|Student t-test |0.000101|3.95e-05|
Comparison with `xlm-roberta-base`:
| test | accuracy p-value | macro F1 p-value|
| --- | --- | --- |
|Wilcoxon|0.00781|0.00781|
|Mann Whithney U test|0.00108|0.00108|
|Student t-test |9.46e-11|6.94e-11|
## Use examples
```python
from simpletransformers.classification import ClassificationModel
model_args = {
"num_train_epochs": 6,
"learning_rate": 3e-6,
"train_batch_size": 69}
model = ClassificationModel(
"camembert", "5roop/sloberta-frenk-hate", use_cuda=True,
args=model_args
)
predictions, logit_output = model.predict(["Silva, ti si grda in neprijazna", "Naša hiša ima dimnik"])
predictions
### Output:
### array([1, 0])
```
## Citation
If you use the model, please cite the following paper on which the original model is based:
```
@article{DBLP:journals/corr/abs-1907-11692,
author = {Yinhan Liu and
Myle Ott and
Naman Goyal and
Jingfei Du and
Mandar Joshi and
Danqi Chen and
Omer Levy and
Mike Lewis and
Luke Zettlemoyer and
Veselin Stoyanov},
title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach},
journal = {CoRR},
volume = {abs/1907.11692},
year = {2019},
url = {http://arxiv.org/abs/1907.11692},
archivePrefix = {arXiv},
eprint = {1907.11692},
timestamp = {Thu, 01 Aug 2019 08:59:33 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
and the dataset used for fine-tuning:
```
@misc{ljubešić2019frenk,
title={The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English},
author={Nikola Ljubešić and Darja Fišer and Tomaž Erjavec},
year={2019},
eprint={1906.02045},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1906.02045}
}
``` |