nljubesi commited on
Commit
71cc14d
·
1 Parent(s): 9090130

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -15
README.md CHANGED
@@ -15,18 +15,17 @@ tags:
15
  - sentiment-regression
16
  - sentiment-classification
17
  - parliament
18
- widget:
19
- - text: >-
20
- Poštovani potpredsjedničke Vlade i ministre hrvatskih branitelja, mislite li
21
- da ste zapravo iznevjerili svoje suborce s kojima ste 555 dana prosvjedovali
22
- u šatoru protiv tadašnjih dužnosnika jer ste zapravo donijeli zakon koji je
23
- neprovediv, a birali ste si suradnike koji nemaju etički integritet.
24
  ---
25
 
26
 
27
  # Multilingual parliament sentiment regression model XLM-R-Parla-Sent
28
 
29
- This model is based on [xlm-r-parla](https://huggingface.co/classla/xlm-r-parla) and fine-tuned on manually annotated sentiment datasets from United Kingdom, Czechia, Slovakia, Slovenia, Bosnia and Herzegovina, Croatia, and Serbia.
 
 
 
 
30
 
31
  ## Annotation schema
32
 
@@ -40,13 +39,11 @@ The discrete labels, present in the original dataset, were mapped to integers as
40
  "M_Positive": 4.0,
41
  "Positive": 5.0,
42
  ```
43
- Model was then fine-tuned on numeric labels and setup as regressor.
44
-
45
-
46
 
47
  ## Finetuning procedure
48
 
49
- The fine-tuning procedure is described in this paper (ARXIV SUBMISSION to be added). Presumed optimal hyperparameters used are
50
  ```
51
  num_train_epochs=4,
52
  train_batch_size=32,
@@ -58,12 +55,12 @@ The fine-tuning procedure is described in this paper (ARXIV SUBMISSION to be add
58
 
59
  Results reported were obtained from 10 fine-tuning runs.
60
 
61
- test dataset | R^2
62
  --- | ---
63
- BCS | 0.6146 ± 0.0104
64
- EN | 0.6722 ± 0.0100
65
 
66
- ## Example
67
 
68
  With `simpletransformers==0.64.3`.
69
  ```python
 
15
  - sentiment-regression
16
  - sentiment-classification
17
  - parliament
18
+ inference: false
 
 
 
 
 
19
  ---
20
 
21
 
22
  # Multilingual parliament sentiment regression model XLM-R-Parla-Sent
23
 
24
+ This model is based on [xlm-r-parla](https://huggingface.co/classla/xlm-r-parla), an XLM-R-large model additionally pre-trained on parliamentary proceedings, and fine-tuned on manually annotated sentiment datasets from Bosnia and Herzegovina, Croatia, Czechia, Serbia, Slovakia, Slovenia, and the United Kingdom.
25
+
26
+ Both the additionally pre-trained model, as the training dataset are results of the [ParlaMint project](https://www.clarin.eu/parlamint). The details on the models and the dataset are described in the following publication (to be published soon):
27
+
28
+ Michal Mochtak, Peter Rupnik, Nikola Ljubešić: The ParlaSent Multilingual Training Dataset for Sentiment Identification in Parliamentary Proceedings.
29
 
30
  ## Annotation schema
31
 
 
39
  "M_Positive": 4.0,
40
  "Positive": 5.0,
41
  ```
42
+ The model was then fine-tuned on numeric labels and set up as a regressor.
 
 
43
 
44
  ## Finetuning procedure
45
 
46
+ The fine-tuning procedure is described in the pending paper. Presumed optimal hyperparameters used are
47
  ```
48
  num_train_epochs=4,
49
  train_batch_size=32,
 
55
 
56
  Results reported were obtained from 10 fine-tuning runs.
57
 
58
+ test dataset | R^2 | MAE
59
  --- | ---
60
+ BCS | 0.6146 ± 0.0104 |
61
+ EN | 0.6722 ± 0.0100 |
62
 
63
+ ## Usage Example
64
 
65
  With `simpletransformers==0.64.3`.
66
  ```python