clemsadand commited on
Commit
335a461
·
verified ·
1 Parent(s): 606369b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -143
README.md CHANGED
@@ -1,13 +1,17 @@
1
  ---
2
  base_model: gpt2
3
  library_name: peft
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
 
12
  ## Model Details
13
 
@@ -15,23 +19,23 @@ library_name: peft
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -41,162 +45,50 @@ library_name: peft
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.11.1
 
1
  ---
2
  base_model: gpt2
3
  library_name: peft
4
+ datasets:
5
+ - clemsadand/quote_data
6
+ metrics:
7
+ - bertscore
8
  ---
9
 
10
+ # Model Card for Quote Generator
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
 
14
+ This model is a fine-tuned version of GPT-2 using LoRA (Low-Rank Adaptation) to generate quotes based on a custom dataset. It is designed to create meaningful and inspirational quotes.
15
 
16
  ## Model Details
17
 
 
19
 
20
  <!-- Provide a longer summary of what this model is. -->
21
 
22
+ The Quote Generator is built on top of the GPT-2 model, fine-tuned using the Low-Rank Adaptation (LoRA) technique to specialize in generating quotes. The training dataset comprises a curated collection of quotes from various sources, enabling the model to produce high-quality and contextually relevant quotes.
23
 
24
+ - **Developed by:** Clément Adandé
25
+ <!-- - **Funded by [optional]:** N/A -->
26
+ - **Shared by [optional]:** Clément Adandé
27
+ - **Model type:** Language Model (NLP)
28
+ - **Language(s) (NLP):** English
29
+ - **License:** MIT
30
+ - **Finetuned from model :** GPT-2
31
 
32
+ ### Model Sources
 
 
 
 
 
 
 
 
33
 
34
  <!-- Provide the basic links for the model. -->
35
 
36
+ - **Repository:** [Quote Generator](https://huggingface.co/clemsadand/quote_generator/)
37
+ <!-- - **Paper [optional]:** N/A -->
38
+ <!-- - **Demo [optional]:** N/A -->
39
 
40
  ## Uses
41
 
 
45
 
46
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
 
48
+ The model can be directly used to generate quotes for various applications, such as social media content, motivational messages, and creative writing.
49
 
50
  ### Downstream Use [optional]
51
 
52
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
 
54
+ The model can be further fine-tuned for specific contexts or integrated into applications requiring quote generation.
55
 
56
  ### Out-of-Scope Use
57
 
58
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
 
60
+ The model should not be used for generating harmful, offensive, or misleading content. It may not perform well for generating quotes in languages other than English.
61
 
62
  ## Bias, Risks, and Limitations
63
 
64
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
 
66
+ The model may inherit biases present in the training data. Generated quotes may not always be factually accurate or appropriate for all contexts. Users should verify the content before use in sensitive applications.
67
 
68
  ### Recommendations
69
 
70
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
 
72
+ Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. It is recommended to review and edit the generated quotes before public use.
73
 
74
  ## How to Get Started with the Model
75
 
76
  Use the code below to get started with the model.
77
 
78
+ ```python
79
+ from peft import PeftModel, PeftConfig
80
+ from transformers import AutoModelForCausalLM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
+ config = PeftConfig.from_pretrained("clemsadand/quote_generator")
83
+ base_model = AutoModelForCausalLM.from_pretrained("gpt2")
84
+ model = PeftModel.from_pretrained(base_model, "clemsadand/quote_generator")
85
 
86
+ tokenizer = AutoTokenizer.from_pretrained("gpt2")
87
 
88
+ input_text = "Generate a quote about kindness with the keywords compassion, empathy, help, generosity, care"
89
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
90
 
91
+ output = model.generate(input_ids)
92
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
93
 
94
+ print(generated_text)