clhuang commited on
Commit
eb05a42
1 Parent(s): d906c0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -0
README.md CHANGED
@@ -1 +1,22 @@
1
  # 繁體中文情緒分類: 負面(0)、正面(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # 繁體中文情緒分類: 負面(0)、正面(1)
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ tokenizer = AutoTokenizer.from_pretrained("Cheng-Lung/bert-sentiment")
4
+ model = AutoModelForSequenceClassification.from_pretrained("Cheng-Lung/bert-sentiment")
5
+
6
+ ## Pediction
7
+ target_names=['Negative','Positive']
8
+ max_length = 200 # 最多字數 若超出模型訓練時的字數,以模型最大字數為依據
9
+ def get_sentiment_proba(text):
10
+ # prepare our text into tokenized sequence
11
+ inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
12
+ # perform inference to our model
13
+ outputs = model(**inputs)
14
+ # get output probabilities by doing softmax
15
+ probs = outputs[0].softmax(1)
16
+
17
+ response = {'Negative': round(float(probs[0, 0]), 2), 'Positive': round(float(probs[0, 1]), 2)}
18
+ # executing argmax function to get the candidate label
19
+ #return probs.argmax()
20
+ return response
21
+
22
+ get_sentiment_proba('不喜歡這款產品')