# 繁體中文情緒分類: 負面(0)、正面(1) 依據ckiplab/albert預訓練模型微調。 # 使用範例: from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Cheng-Lung/bert-sentiment") model = AutoModelForSequenceClassification.from_pretrained("Cheng-Lung/bert-sentiment") ## Pediction target_names=['Negative','Positive'] max_length = 200 # 最多字數 若超出模型訓練時的字數,以模型最大字數為依據 def get_sentiment_proba(text): # prepare our text into tokenized sequence inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt") # perform inference to our model outputs = model(**inputs) # get output probabilities by doing softmax probs = outputs[0].softmax(1) response = {'Negative': round(float(probs[0, 0]), 2), 'Positive': round(float(probs[0, 1]), 2)} # executing argmax function to get the candidate label #return probs.argmax() return response get_sentiment_proba('不喜歡這款產品')