File size: 2,092 Bytes
b4d1ad0 cdb81d4 b4d1ad0 fedc1fb b4d1ad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: apache-2.0
datasets:
- climatebert/climate_detection
language:
- en
metrics:
- accuracy
---
# Model Card for distilroberta-base-climate-detector
## Model Description
This is the fine-tuned ClimateBERT language model with a classification head for detecting climate-related paragraphs.
Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model as starting point, the distilroberta-base-climate-detector model is fine-tuned on our [climatebert/climate_detection](https://huggingface.co/climatebert/climate_detection) dataset.
*Note: This model is trained on paragraphs. It may not perform well on sentences.*
## Citation Information
```bibtex
@techreport{bingler2023cheaptalk,
title={How Cheap Talk in Climate Disclosures Relates to Climate Initiatives, Corporate Emissions, and Reputation Risk},
author={Bingler, Julia and Kraus, Mathias and Leippold, Markus and Webersinke, Nicolas},
type={Working paper},
institution={Available at SSRN 3998435},
year={2023}
}
```
## How to Get Started With the Model
You can use the model with a pipeline for text classification:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.pt_utils import KeyDataset
import datasets
from tqdm.auto import tqdm
dataset_name = "climatebert/climate_detection"
model_name = "climatebert/distilroberta-base-climate-detector"
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
dataset = datasets.load_dataset(dataset_name, split="test")
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
print(out)
``` |