File size: 2,739 Bytes
81225f2 466d484 81225f2 466d484 afa4bd2 085a49c 466d484 d480a97 afa4bd2 085a49c d750497 afa4bd2 085a49c afa4bd2 d9438fa afa4bd2 466d484 1b6122b 466d484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
language: en
license: apache-2.0
---
# Model Card for distilroberta-base-climate-s
## Model Description
This is the ClimateBERT language model based on the SIM-SELECT sample selection strategy.
*Note: We generally recommend choosing the [distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model over this language model (unless you have good reasons not to).*
Using the [DistilRoBERTa](https://huggingface.co/distilroberta-base) model as starting point, the ClimateBERT Language Model is additionally pre-trained on a text corpus comprising climate-related research paper abstracts, corporate and general news and reports from companies. The underlying methodology can be found in our [language model research paper](https://arxiv.org/abs/2110.12010).
## Climate performance model card
| distilroberta-base-climate-s | |
|--------------------------------------------------------------------------|----------------|
| 1. Is the resulting model publicly available? | Yes |
| 2. How much time does the training of the final model take? | 48 hours |
| 3. How much time did all experiments take (incl. hyperparameter search)? | 350 hours |
| 4. What was the power of GPU and CPU? | 0.7 kW |
| 5. At which geo location were the computations performed? | Germany |
| 6. What was the energy mix at the geo location? | 470 gCO2eq/kWh |
| 7. How much CO2eq was emitted to train the final model? | 15.79 kg |
| 8. How much CO2eq was emitted for all experiments? | 115.15 kg |
| 9. What is the average CO2eq emission for the inference of one sample? | 0.62 mg |
| 10. Which positive environmental impact can be expected from this work? | This work can be categorized as a building block tools following Jin et al (2021). It supports the training of NLP models in the field of climate change and, thereby, have a positive environmental impact in the future. |
| 11. Comments | Block pruning could decrease CO2eq emissions |
## Citation Information
```bibtex
@inproceedings{wkbl2022climatebert,
title={{ClimateBERT: A Pretrained Language Model for Climate-Related Text}},
author={Webersinke, Nicolas and Kraus, Mathias and Bingler, Julia and Leippold, Markus},
booktitle={Proceedings of AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges},
year={2022},
doi={https://doi.org/10.48550/arXiv.2212.13631},
}
``` |