makraus commited on
Commit
f4cb841
1 Parent(s): 5f43c10

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -1,3 +1,47 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # Model Card for transition-physical
5
+
6
+ ## Model Description
7
+
8
+ This is the fine-tuned ClimateBERT language model with a classification head for detecting sentences that are either related to transition risks or to physical climate risks.
9
+ Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model as starting point, the distilroberta-base-climate-detector model is fine-tuned on our human-annotated dataset.
10
+
11
+ ## Citation Information
12
+
13
+ ```bibtex
14
+ @article{deng2023war,
15
+ title={War and Policy: Investor Expectations on the Net-Zero Transition},
16
+ author={Deng, Ming and Leippold, Markus and Wagner, Alexander F and Wang, Qian},
17
+ journal={Swiss Finance Institute Research Paper},
18
+ number={22-29},
19
+ year={2023}
20
+ }
21
+ ```
22
+
23
+ ## How to Get Started With the Model
24
+ You can use the model with a pipeline for text classification:
25
+
26
+ ```python
27
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
28
+ from transformers.pipelines.pt_utils import KeyDataset
29
+ import datasets
30
+ from tqdm.auto import tqdm
31
+
32
+ dataset_name = "climatebert/climate_detection"
33
+ tokenizer_name = “"climatebert/distilroberta-base-climate-detector"
34
+ model_name = "climatebert/transition-physical"
35
+
36
+ # If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
37
+ dataset = datasets.load_dataset(dataset_name, split="test")
38
+
39
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
40
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
41
+
42
+ pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
43
+
44
+ # See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
45
+ for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
46
+ print(out)
47
+ ```