File size: 4,324 Bytes
06b0bec
 
 
 
 
 
 
1de3384
06b0bec
 
 
 
 
 
1de3384
06b0bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: final-lr2e-5-bs16-fp16-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# final-lr2e-5-bs16-fp16-2

This model is a fine-tuned version of [clincolnoz/MoreSexistBERT](https://huggingface.co/clincolnoz/MoreSexistBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3337
- F1 Macro: 0.8461
- F1 Weighted: 0.8868
- F1: 0.7671
- Accuracy: 0.8868
- Confusion Matrix: [[2801  229]
 [ 224  746]]
- Confusion Matrix Norm: [[0.92442244 0.07557756]
 [0.23092784 0.76907216]]
- Classification Report:               precision    recall  f1-score     support
0              0.925950  0.924422  0.925186  3030.00000
1              0.765128  0.769072  0.767095   970.00000
accuracy       0.886750  0.886750  0.886750     0.88675
macro avg      0.845539  0.846747  0.846140  4000.00000
weighted avg   0.886951  0.886750  0.886849  4000.00000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 12345
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1     | Accuracy | Confusion Matrix           | Confusion Matrix Norm                              | Classification Report                                                                                                                                                                                                                                                                                                                           |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 0.3196        | 1.0   | 1000 | 0.2973          | 0.8423   | 0.8871      | 0.7554 | 0.8902   | [[2883  147]
 [ 292  678]] | [[0.95148515 0.04851485]
 [0.30103093 0.69896907]] |               precision    recall  f1-score     support
0              0.908031  0.951485  0.929251  3030.00000
1              0.821818  0.698969  0.755432   970.00000
accuracy       0.890250  0.890250  0.890250     0.89025
macro avg      0.864925  0.825227  0.842341  4000.00000
weighted avg   0.887125  0.890250  0.887100  4000.00000 |
| 0.2447        | 2.0   | 2000 | 0.3277          | 0.8447   | 0.8872      | 0.7623 | 0.8885   | [[2839  191]
 [ 255  715]] | [[0.9369637 0.0630363]
 [0.2628866 0.7371134]]     |               precision    recall  f1-score    support
0              0.917582  0.936964  0.927172  3030.0000
1              0.789183  0.737113  0.762260   970.0000
accuracy       0.888500  0.888500  0.888500     0.8885
macro avg      0.853383  0.837039  0.844716  4000.0000
weighted avg   0.886446  0.888500  0.887181  4000.0000       |
| 0.2037        | 3.0   | 3000 | 0.3337          | 0.8461   | 0.8868      | 0.7671 | 0.8868   | [[2801  229]
 [ 224  746]] | [[0.92442244 0.07557756]
 [0.23092784 0.76907216]] |               precision    recall  f1-score     support
0              0.925950  0.924422  0.925186  3030.00000
1              0.765128  0.769072  0.767095   970.00000
accuracy       0.886750  0.886750  0.886750     0.88675
macro avg      0.845539  0.846747  0.846140  4000.00000
weighted avg   0.886951  0.886750  0.886849  4000.00000 |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2