Commit
·
0347211
1
Parent(s):
4fb0ffe
correct weights
Browse files- README.md +42 -41
- all_results.json +15 -15
- eval_results.json +11 -11
- predict_results_None.txt +0 -0
- pytorch_model.bin +1 -1
- train_results.json +4 -4
- trainer_state.json +49 -49
- training_args.bin +2 -2
README.md
CHANGED
@@ -6,32 +6,32 @@ metrics:
|
|
6 |
- f1
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
-
- name: final-lr2e-5-bs16-
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
# final-lr2e-5-bs16-
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- F1 Macro: 0.
|
22 |
-
- F1 Weighted: 0.
|
23 |
-
- F1: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Confusion Matrix: [[
|
26 |
-
[
|
27 |
-
- Confusion Matrix Norm: [[0.
|
28 |
-
[0.
|
29 |
-
- Classification Report: precision recall f1-score
|
30 |
-
0 0.
|
31 |
-
1 0.
|
32 |
-
accuracy 0.
|
33 |
-
macro avg 0.
|
34 |
-
weighted avg 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -57,35 +57,36 @@ The following hyperparameters were used during training:
|
|
57 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
- lr_scheduler_type: linear
|
59 |
- num_epochs: 3.0
|
|
|
60 |
|
61 |
### Training results
|
62 |
|
63 |
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
|
64 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
65 |
-
| 0.
|
66 |
-
[
|
67 |
-
[0.
|
68 |
-
0 0.
|
69 |
-
1 0.
|
70 |
-
accuracy 0.
|
71 |
-
macro avg 0.
|
72 |
-
weighted avg 0.
|
73 |
-
| 0.
|
74 |
-
[
|
75 |
-
[0.
|
76 |
-
0 0.
|
77 |
-
1 0.
|
78 |
-
accuracy 0.
|
79 |
-
macro avg 0.
|
80 |
-
weighted avg 0.
|
81 |
-
| 0.
|
82 |
-
[
|
83 |
-
[0.
|
84 |
-
0 0.
|
85 |
-
1 0.
|
86 |
-
accuracy 0.
|
87 |
-
macro avg 0.
|
88 |
-
weighted avg 0.
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
6 |
- f1
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
+
- name: final-lr2e-5-bs16-fp16-2
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# final-lr2e-5-bs16-fp16-2
|
17 |
|
18 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4823
|
21 |
+
- F1 Macro: 0.8301
|
22 |
+
- F1 Weighted: 0.8772
|
23 |
+
- F1: 0.7388
|
24 |
+
- Accuracy: 0.8792
|
25 |
+
- Confusion Matrix: [[2834 196]
|
26 |
+
[ 287 683]]
|
27 |
+
- Confusion Matrix Norm: [[0.93531353 0.06468647]
|
28 |
+
[0.29587629 0.70412371]]
|
29 |
+
- Classification Report: precision recall f1-score support
|
30 |
+
0 0.908042 0.935314 0.921476 3030.00000
|
31 |
+
1 0.777019 0.704124 0.738778 970.00000
|
32 |
+
accuracy 0.879250 0.879250 0.879250 0.87925
|
33 |
+
macro avg 0.842531 0.819719 0.830127 4000.00000
|
34 |
+
weighted avg 0.876269 0.879250 0.877172 4000.00000
|
35 |
|
36 |
## Model description
|
37 |
|
|
|
57 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
- lr_scheduler_type: linear
|
59 |
- num_epochs: 3.0
|
60 |
+
- mixed_precision_training: Native AMP
|
61 |
|
62 |
### Training results
|
63 |
|
64 |
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Weighted | F1 | Accuracy | Confusion Matrix | Confusion Matrix Norm | Classification Report |
|
65 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------:|:--------:|:--------------------------:|:--------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
66 |
+
| 0.3333 | 1.0 | 1000 | 0.3064 | 0.8165 | 0.8672 | 0.7181 | 0.8692 | [[2811 219]
|
67 |
+
[ 304 666]] | [[0.92772277 0.07227723]
|
68 |
+
[0.31340206 0.68659794]] | precision recall f1-score support
|
69 |
+
0 0.902408 0.927723 0.914890 3030.00000
|
70 |
+
1 0.752542 0.686598 0.718059 970.00000
|
71 |
+
accuracy 0.869250 0.869250 0.869250 0.86925
|
72 |
+
macro avg 0.827475 0.807160 0.816475 4000.00000
|
73 |
+
weighted avg 0.866065 0.869250 0.867159 4000.00000 |
|
74 |
+
| 0.2271 | 2.0 | 2000 | 0.3905 | 0.8238 | 0.8708 | 0.7326 | 0.871 | [[2777 253]
|
75 |
+
[ 263 707]] | [[0.91650165 0.08349835]
|
76 |
+
[0.27113402 0.72886598]] | precision recall f1-score support
|
77 |
+
0 0.913487 0.916502 0.914992 3030.000
|
78 |
+
1 0.736458 0.728866 0.732642 970.000
|
79 |
+
accuracy 0.871000 0.871000 0.871000 0.871
|
80 |
+
macro avg 0.824973 0.822684 0.823817 4000.000
|
81 |
+
weighted avg 0.870557 0.871000 0.870772 4000.000 |
|
82 |
+
| 0.1435 | 3.0 | 3000 | 0.4823 | 0.8301 | 0.8772 | 0.7388 | 0.8792 | [[2834 196]
|
83 |
+
[ 287 683]] | [[0.93531353 0.06468647]
|
84 |
+
[0.29587629 0.70412371]] | precision recall f1-score support
|
85 |
+
0 0.908042 0.935314 0.921476 3030.00000
|
86 |
+
1 0.777019 0.704124 0.738778 970.00000
|
87 |
+
accuracy 0.879250 0.879250 0.879250 0.87925
|
88 |
+
macro avg 0.842531 0.819719 0.830127 4000.00000
|
89 |
+
weighted avg 0.876269 0.879250 0.877172 4000.00000 |
|
90 |
|
91 |
|
92 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_classification_report": " precision recall f1-score
|
5 |
-
"eval_confusion_matrix": "[[
|
6 |
-
"eval_confusion_matrix_norm": "[[0.
|
7 |
-
"eval_f1": 0.
|
8 |
-
"eval_f1_macro": 0.
|
9 |
-
"eval_f1_weighted": 0.
|
10 |
-
"eval_loss": 0.
|
11 |
-
"eval_runtime":
|
12 |
"eval_samples": 4000,
|
13 |
-
"eval_samples_per_second":
|
14 |
-
"eval_steps_per_second":
|
15 |
-
"train_loss": 0.
|
16 |
-
"train_runtime":
|
17 |
"train_samples": 16000,
|
18 |
-
"train_samples_per_second":
|
19 |
-
"train_steps_per_second":
|
20 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.87925,
|
4 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.908042 0.935314 0.921476 3030.00000\n1 0.777019 0.704124 0.738778 970.00000\naccuracy 0.879250 0.879250 0.879250 0.87925\nmacro avg 0.842531 0.819719 0.830127 4000.00000\nweighted avg 0.876269 0.879250 0.877172 4000.00000",
|
5 |
+
"eval_confusion_matrix": "[[2834 196]\n [ 287 683]]",
|
6 |
+
"eval_confusion_matrix_norm": "[[0.93531353 0.06468647]\n [0.29587629 0.70412371]]",
|
7 |
+
"eval_f1": 0.7387777176852353,
|
8 |
+
"eval_f1_macro": 0.8301269502098749,
|
9 |
+
"eval_f1_weighted": 0.8771718049600645,
|
10 |
+
"eval_loss": 0.4823172092437744,
|
11 |
+
"eval_runtime": 9.6229,
|
12 |
"eval_samples": 4000,
|
13 |
+
"eval_samples_per_second": 415.677,
|
14 |
+
"eval_steps_per_second": 25.98,
|
15 |
+
"train_loss": 0.2520793151855469,
|
16 |
+
"train_runtime": 430.4281,
|
17 |
"train_samples": 16000,
|
18 |
+
"train_samples_per_second": 111.517,
|
19 |
+
"train_steps_per_second": 6.97
|
20 |
}
|
eval_results.json
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_classification_report": " precision recall f1-score
|
5 |
-
"eval_confusion_matrix": "[[
|
6 |
-
"eval_confusion_matrix_norm": "[[0.
|
7 |
-
"eval_f1": 0.
|
8 |
-
"eval_f1_macro": 0.
|
9 |
-
"eval_f1_weighted": 0.
|
10 |
-
"eval_loss": 0.
|
11 |
-
"eval_runtime":
|
12 |
"eval_samples": 4000,
|
13 |
-
"eval_samples_per_second":
|
14 |
-
"eval_steps_per_second":
|
15 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.87925,
|
4 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.908042 0.935314 0.921476 3030.00000\n1 0.777019 0.704124 0.738778 970.00000\naccuracy 0.879250 0.879250 0.879250 0.87925\nmacro avg 0.842531 0.819719 0.830127 4000.00000\nweighted avg 0.876269 0.879250 0.877172 4000.00000",
|
5 |
+
"eval_confusion_matrix": "[[2834 196]\n [ 287 683]]",
|
6 |
+
"eval_confusion_matrix_norm": "[[0.93531353 0.06468647]\n [0.29587629 0.70412371]]",
|
7 |
+
"eval_f1": 0.7387777176852353,
|
8 |
+
"eval_f1_macro": 0.8301269502098749,
|
9 |
+
"eval_f1_weighted": 0.8771718049600645,
|
10 |
+
"eval_loss": 0.4823172092437744,
|
11 |
+
"eval_runtime": 9.6229,
|
12 |
"eval_samples": 4000,
|
13 |
+
"eval_samples_per_second": 415.677,
|
14 |
+
"eval_steps_per_second": 25.98
|
15 |
}
|
predict_results_None.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438007925
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e9f8d462d8d9118a72bd13f278e2a7f6f042f093ccece0b57016b19572f8c56
|
3 |
size 438007925
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 16000,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"train_loss": 0.2520793151855469,
|
4 |
+
"train_runtime": 430.4281,
|
5 |
"train_samples": 16000,
|
6 |
+
"train_samples_per_second": 111.517,
|
7 |
+
"train_steps_per_second": 6.97
|
8 |
}
|
trainer_state.json
CHANGED
@@ -9,93 +9,93 @@
|
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.5,
|
12 |
-
"learning_rate": 1.
|
13 |
-
"loss": 0.
|
14 |
"step": 500
|
15 |
},
|
16 |
{
|
17 |
"epoch": 1.0,
|
18 |
-
"learning_rate": 1.
|
19 |
-
"loss": 0.
|
20 |
"step": 1000
|
21 |
},
|
22 |
{
|
23 |
"epoch": 1.0,
|
24 |
-
"eval_accuracy": 0.
|
25 |
-
"eval_classification_report": " precision recall f1-score support\n0 0.
|
26 |
-
"eval_confusion_matrix": "[[
|
27 |
-
"eval_confusion_matrix_norm": "[[0.
|
28 |
-
"eval_f1": 0.
|
29 |
-
"eval_f1_macro": 0.
|
30 |
-
"eval_f1_weighted": 0.
|
31 |
-
"eval_loss": 0.
|
32 |
-
"eval_runtime":
|
33 |
-
"eval_samples_per_second":
|
34 |
-
"eval_steps_per_second":
|
35 |
"step": 1000
|
36 |
},
|
37 |
{
|
38 |
"epoch": 1.5,
|
39 |
-
"learning_rate":
|
40 |
-
"loss": 0.
|
41 |
"step": 1500
|
42 |
},
|
43 |
{
|
44 |
"epoch": 2.0,
|
45 |
-
"learning_rate": 6.
|
46 |
-
"loss": 0.
|
47 |
"step": 2000
|
48 |
},
|
49 |
{
|
50 |
"epoch": 2.0,
|
51 |
-
"eval_accuracy": 0.
|
52 |
-
"eval_classification_report": " precision recall f1-score
|
53 |
-
"eval_confusion_matrix": "[[
|
54 |
-
"eval_confusion_matrix_norm": "[[0.
|
55 |
-
"eval_f1": 0.
|
56 |
-
"eval_f1_macro": 0.
|
57 |
-
"eval_f1_weighted": 0.
|
58 |
-
"eval_loss": 0.
|
59 |
-
"eval_runtime":
|
60 |
-
"eval_samples_per_second":
|
61 |
-
"eval_steps_per_second":
|
62 |
"step": 2000
|
63 |
},
|
64 |
{
|
65 |
"epoch": 2.5,
|
66 |
-
"learning_rate": 3.
|
67 |
-
"loss": 0.
|
68 |
"step": 2500
|
69 |
},
|
70 |
{
|
71 |
"epoch": 3.0,
|
72 |
-
"learning_rate":
|
73 |
-
"loss": 0.
|
74 |
"step": 3000
|
75 |
},
|
76 |
{
|
77 |
"epoch": 3.0,
|
78 |
-
"eval_accuracy": 0.
|
79 |
-
"eval_classification_report": " precision recall f1-score
|
80 |
-
"eval_confusion_matrix": "[[
|
81 |
-
"eval_confusion_matrix_norm": "[[0.
|
82 |
-
"eval_f1": 0.
|
83 |
-
"eval_f1_macro": 0.
|
84 |
-
"eval_f1_weighted": 0.
|
85 |
-
"eval_loss": 0.
|
86 |
-
"eval_runtime":
|
87 |
-
"eval_samples_per_second":
|
88 |
-
"eval_steps_per_second":
|
89 |
"step": 3000
|
90 |
},
|
91 |
{
|
92 |
"epoch": 3.0,
|
93 |
"step": 3000,
|
94 |
"total_flos": 1.262933065728e+16,
|
95 |
-
"train_loss": 0.
|
96 |
-
"train_runtime":
|
97 |
-
"train_samples_per_second":
|
98 |
-
"train_steps_per_second":
|
99 |
}
|
100 |
],
|
101 |
"max_steps": 3000,
|
|
|
9 |
"log_history": [
|
10 |
{
|
11 |
"epoch": 0.5,
|
12 |
+
"learning_rate": 1.6673333333333335e-05,
|
13 |
+
"loss": 0.4114,
|
14 |
"step": 500
|
15 |
},
|
16 |
{
|
17 |
"epoch": 1.0,
|
18 |
+
"learning_rate": 1.3340000000000001e-05,
|
19 |
+
"loss": 0.3333,
|
20 |
"step": 1000
|
21 |
},
|
22 |
{
|
23 |
"epoch": 1.0,
|
24 |
+
"eval_accuracy": 0.86925,
|
25 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.902408 0.927723 0.914890 3030.00000\n1 0.752542 0.686598 0.718059 970.00000\naccuracy 0.869250 0.869250 0.869250 0.86925\nmacro avg 0.827475 0.807160 0.816475 4000.00000\nweighted avg 0.866065 0.869250 0.867159 4000.00000",
|
26 |
+
"eval_confusion_matrix": "[[2811 219]\n [ 304 666]]",
|
27 |
+
"eval_confusion_matrix_norm": "[[0.92772277 0.07227723]\n [0.31340206 0.68659794]]",
|
28 |
+
"eval_f1": 0.7180592991913748,
|
29 |
+
"eval_f1_macro": 0.8164747268943042,
|
30 |
+
"eval_f1_weighted": 0.8671586721613128,
|
31 |
+
"eval_loss": 0.3063889145851135,
|
32 |
+
"eval_runtime": 9.6316,
|
33 |
+
"eval_samples_per_second": 415.3,
|
34 |
+
"eval_steps_per_second": 25.956,
|
35 |
"step": 1000
|
36 |
},
|
37 |
{
|
38 |
"epoch": 1.5,
|
39 |
+
"learning_rate": 1.0013333333333335e-05,
|
40 |
+
"loss": 0.2455,
|
41 |
"step": 1500
|
42 |
},
|
43 |
{
|
44 |
"epoch": 2.0,
|
45 |
+
"learning_rate": 6.6866666666666665e-06,
|
46 |
+
"loss": 0.2271,
|
47 |
"step": 2000
|
48 |
},
|
49 |
{
|
50 |
"epoch": 2.0,
|
51 |
+
"eval_accuracy": 0.871,
|
52 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.913487 0.916502 0.914992 3030.000\n1 0.736458 0.728866 0.732642 970.000\naccuracy 0.871000 0.871000 0.871000 0.871\nmacro avg 0.824973 0.822684 0.823817 4000.000\nweighted avg 0.870557 0.871000 0.870772 4000.000",
|
53 |
+
"eval_confusion_matrix": "[[2777 253]\n [ 263 707]]",
|
54 |
+
"eval_confusion_matrix_norm": "[[0.91650165 0.08349835]\n [0.27113402 0.72886598]]",
|
55 |
+
"eval_f1": 0.732642487046632,
|
56 |
+
"eval_f1_macro": 0.8238171249071711,
|
57 |
+
"eval_f1_weighted": 0.8707720634053486,
|
58 |
+
"eval_loss": 0.3905148506164551,
|
59 |
+
"eval_runtime": 9.6371,
|
60 |
+
"eval_samples_per_second": 415.062,
|
61 |
+
"eval_steps_per_second": 25.941,
|
62 |
"step": 2000
|
63 |
},
|
64 |
{
|
65 |
"epoch": 2.5,
|
66 |
+
"learning_rate": 3.3533333333333336e-06,
|
67 |
+
"loss": 0.1517,
|
68 |
"step": 2500
|
69 |
},
|
70 |
{
|
71 |
"epoch": 3.0,
|
72 |
+
"learning_rate": 2e-08,
|
73 |
+
"loss": 0.1435,
|
74 |
"step": 3000
|
75 |
},
|
76 |
{
|
77 |
"epoch": 3.0,
|
78 |
+
"eval_accuracy": 0.87925,
|
79 |
+
"eval_classification_report": " precision recall f1-score support\n0 0.908042 0.935314 0.921476 3030.00000\n1 0.777019 0.704124 0.738778 970.00000\naccuracy 0.879250 0.879250 0.879250 0.87925\nmacro avg 0.842531 0.819719 0.830127 4000.00000\nweighted avg 0.876269 0.879250 0.877172 4000.00000",
|
80 |
+
"eval_confusion_matrix": "[[2834 196]\n [ 287 683]]",
|
81 |
+
"eval_confusion_matrix_norm": "[[0.93531353 0.06468647]\n [0.29587629 0.70412371]]",
|
82 |
+
"eval_f1": 0.7387777176852353,
|
83 |
+
"eval_f1_macro": 0.8301269502098749,
|
84 |
+
"eval_f1_weighted": 0.8771718049600645,
|
85 |
+
"eval_loss": 0.4823172092437744,
|
86 |
+
"eval_runtime": 9.6475,
|
87 |
+
"eval_samples_per_second": 414.617,
|
88 |
+
"eval_steps_per_second": 25.914,
|
89 |
"step": 3000
|
90 |
},
|
91 |
{
|
92 |
"epoch": 3.0,
|
93 |
"step": 3000,
|
94 |
"total_flos": 1.262933065728e+16,
|
95 |
+
"train_loss": 0.2520793151855469,
|
96 |
+
"train_runtime": 430.4281,
|
97 |
+
"train_samples_per_second": 111.517,
|
98 |
+
"train_steps_per_second": 6.97
|
99 |
}
|
100 |
],
|
101 |
"max_steps": 3000,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d641973e448ee0f5cd30cee300ef688f8e2706b6569a9d4b8a510df14f066454
|
3 |
+
size 3579
|