File size: 2,121 Bytes
1d5ec78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
language: en
library_name: clinicadl
tags:
- clinicadl
license: mit
---
# Model Card for mymodel  
This model was trained with ClinicaDL. You can find here the   
## General information  
## Architecture  
This model was trained for **classification** and the architecture chosen is **Conv4_FC3**.  
**dropout**: 0.0  
**latent_space_size**: 2  
**feature_size**: 1024  
**n_conv**: 4  
**io_layer_channels**: 8  
**recons_weight**: 1  
**kl_weight**: 1  
**normalization**: batch  
**architecture**: Conv4_FC3  
**multi_network**: False  
**dropout**: 0.0  
**latent_space_dimension**: 64  
**latent_space_size**: 2  
**selection_metrics**: ['loss']  
**label**: diagnosis  
**selection_threshold**: 0.0  
**gpu**: True  
**n_proc**: 32  
**batch_size**: 32  
**evaluation_steps**: 20  
**seed**: 0  
**deterministic**: False  
**compensation**: memory  
**transfer_path**: ../../autoencoders/exp3/maps  
**transfer_selection_metric**: loss  
**use_extracted_features**: False  
**multi_cohort**: False  
**diagnoses**: ['AD', 'CN']  
**baseline**: True  
**normalize**: True  
**data_augmentation**: False  
**sampler**: random  
**n_splits**: 5  
**epochs**: 200  
**learning_rate**: 1e-05  
**weight_decay**: 0.0001  
**patience**: 10  
**tolerance**: 0.0  
**accumulation_steps**: 1  
**optimizer**: Adam  
**preprocessing_dict**: {'preprocessing': 't1-linear', 'mode': 'roi', 'use_uncropped_image': False, 'roi_list': ['leftHippocampusBox', 'rightHippocampusBox'], 'uncropped_roi': False, 'prepare_dl': False, 'file_type': {'pattern': '*space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz', 'description': 'T1W Image registered using t1-linear and cropped (matrix size 169×208×179, 1 mm isotropic voxels)', 'needed_pipeline': 't1-linear'}}  
**mode**: roi  
**network_task**: classification  
**caps_directory**: $WORK/../commun/datasets/adni/caps/caps_v2021  
**tsv_path**: $WORK/Aramis_tools/ClinicaDL_tools/experiments_ADDL/data/ADNI/train  
**validation**: KFoldSplit  
**num_networks**: 2  
**label_code**: {'AD': 0, 'CN': 1}  
**output_size**: 2  
**input_size**: [1, 50, 50, 50]  
**loss**: None