File size: 13,878 Bytes
2d05f74
 
 
f8fabf9
2d05f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8fabf9
 
2d05f74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
base_model: microsoft/wavlm-base
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wavlm-base_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wavlm-base_2

This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0244
- Accuracy: 0.9966

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 2
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4872        | 0.25  | 100   | 0.2180          | 0.8974   |
| 0.1571        | 0.5   | 200   | 0.2582          | 0.9334   |
| 0.0644        | 0.76  | 300   | 0.0244          | 0.9966   |
| 0.0553        | 1.01  | 400   | 0.1156          | 0.9928   |
| 0.1108        | 1.26  | 500   | 0.1576          | 0.9898   |
| 0.0849        | 1.51  | 600   | 0.0871          | 0.9947   |
| 0.0635        | 1.76  | 700   | 0.1088          | 0.9939   |
| 0.0504        | 2.02  | 800   | 0.4074          | 0.9790   |
| 0.1075        | 2.27  | 900   | 0.2955          | 0.9814   |
| 0.2387        | 2.52  | 1000  | 0.0651          | 0.9956   |
| 0.3052        | 2.77  | 1100  | 0.2379          | 0.8974   |
| 0.3336        | 3.02  | 1200  | 0.3527          | 0.8974   |
| 0.3322        | 3.28  | 1300  | 0.3307          | 0.8974   |
| 0.3201        | 3.53  | 1400  | 0.3405          | 0.8974   |
| 0.3406        | 3.78  | 1500  | 0.3335          | 0.8974   |
| 0.3475        | 4.03  | 1600  | 0.3341          | 0.8974   |
| 0.3312        | 4.28  | 1700  | 0.3361          | 0.8974   |
| 0.3367        | 4.54  | 1800  | 0.3310          | 0.8974   |
| 0.3284        | 4.79  | 1900  | 0.3339          | 0.8974   |
| 0.3267        | 5.04  | 2000  | 0.3350          | 0.8974   |
| 0.338         | 5.29  | 2100  | 0.3308          | 0.8974   |
| 0.3277        | 5.55  | 2200  | 0.3309          | 0.8974   |
| 0.3294        | 5.8   | 2300  | 0.3313          | 0.8974   |
| 0.3315        | 6.05  | 2400  | 0.3360          | 0.8974   |
| 0.3397        | 6.3   | 2500  | 0.3307          | 0.8974   |
| 0.3318        | 6.55  | 2600  | 0.3359          | 0.8974   |
| 0.3312        | 6.81  | 2700  | 0.3308          | 0.8974   |
| 0.3155        | 7.06  | 2800  | 0.3317          | 0.8974   |
| 0.3304        | 7.31  | 2900  | 0.3362          | 0.8974   |
| 0.338         | 7.56  | 3000  | 0.3342          | 0.8974   |
| 0.3241        | 7.81  | 3100  | 0.3310          | 0.8974   |
| 0.3325        | 8.07  | 3200  | 0.3326          | 0.8974   |
| 0.3202        | 8.32  | 3300  | 0.3345          | 0.8974   |
| 0.3315        | 8.57  | 3400  | 0.3335          | 0.8974   |
| 0.3288        | 8.82  | 3500  | 0.3312          | 0.8974   |
| 0.3371        | 9.07  | 3600  | 0.3401          | 0.8974   |
| 0.3409        | 9.33  | 3700  | 0.3330          | 0.8974   |
| 0.3236        | 9.58  | 3800  | 0.3330          | 0.8974   |
| 0.3224        | 9.83  | 3900  | 0.3321          | 0.8974   |
| 0.3439        | 10.08 | 4000  | 0.3326          | 0.8974   |
| 0.3382        | 10.33 | 4100  | 0.3310          | 0.8974   |
| 0.3307        | 10.59 | 4200  | 0.3382          | 0.8974   |
| 0.3231        | 10.84 | 4300  | 0.3325          | 0.8974   |
| 0.3095        | 11.09 | 4400  | 0.3348          | 0.8974   |
| 0.3442        | 11.34 | 4500  | 0.3327          | 0.8974   |
| 0.3269        | 11.59 | 4600  | 0.3326          | 0.8974   |
| 0.3323        | 11.85 | 4700  | 0.3308          | 0.8974   |
| 0.3313        | 12.1  | 4800  | 0.3308          | 0.8974   |
| 0.3283        | 12.35 | 4900  | 0.3314          | 0.8974   |
| 0.3331        | 12.6  | 5000  | 0.3307          | 0.8974   |
| 0.3317        | 12.85 | 5100  | 0.3344          | 0.8974   |
| 0.3283        | 13.11 | 5200  | 0.3320          | 0.8974   |
| 0.3263        | 13.36 | 5300  | 0.3311          | 0.8974   |
| 0.3421        | 13.61 | 5400  | 0.3307          | 0.8974   |
| 0.3164        | 13.86 | 5500  | 0.3318          | 0.8974   |
| 0.3315        | 14.11 | 5600  | 0.3335          | 0.8974   |
| 0.3415        | 14.37 | 5700  | 0.3315          | 0.8974   |
| 0.3325        | 14.62 | 5800  | 0.3307          | 0.8974   |
| 0.3264        | 14.87 | 5900  | 0.3330          | 0.8974   |
| 0.3223        | 15.12 | 6000  | 0.3307          | 0.8974   |
| 0.3289        | 15.37 | 6100  | 0.3329          | 0.8974   |
| 0.3353        | 15.63 | 6200  | 0.3311          | 0.8974   |
| 0.3246        | 15.88 | 6300  | 0.3311          | 0.8974   |
| 0.3425        | 16.13 | 6400  | 0.3307          | 0.8974   |
| 0.331         | 16.38 | 6500  | 0.3307          | 0.8974   |
| 0.3293        | 16.64 | 6600  | 0.3353          | 0.8974   |
| 0.3249        | 16.89 | 6700  | 0.3339          | 0.8974   |
| 0.3214        | 17.14 | 6800  | 0.3338          | 0.8974   |
| 0.3259        | 17.39 | 6900  | 0.3327          | 0.8974   |
| 0.3408        | 17.64 | 7000  | 0.3318          | 0.8974   |
| 0.3258        | 17.9  | 7100  | 0.3318          | 0.8974   |
| 0.3299        | 18.15 | 7200  | 0.3308          | 0.8974   |
| 0.327         | 18.4  | 7300  | 0.3371          | 0.8974   |
| 0.3317        | 18.65 | 7400  | 0.3308          | 0.8974   |
| 0.3291        | 18.9  | 7500  | 0.3310          | 0.8974   |
| 0.3263        | 19.16 | 7600  | 0.3325          | 0.8974   |
| 0.3223        | 19.41 | 7700  | 0.3346          | 0.8974   |
| 0.3403        | 19.66 | 7800  | 0.3316          | 0.8974   |
| 0.3265        | 19.91 | 7900  | 0.3309          | 0.8974   |
| 0.33          | 20.16 | 8000  | 0.3318          | 0.8974   |
| 0.3488        | 20.42 | 8100  | 0.3313          | 0.8974   |
| 0.3293        | 20.67 | 8200  | 0.3335          | 0.8974   |
| 0.3095        | 20.92 | 8300  | 0.3356          | 0.8974   |
| 0.3366        | 21.17 | 8400  | 0.3332          | 0.8974   |
| 0.317         | 21.42 | 8500  | 0.3338          | 0.8974   |
| 0.3299        | 21.68 | 8600  | 0.3308          | 0.8974   |
| 0.3434        | 21.93 | 8700  | 0.3310          | 0.8974   |
| 0.3208        | 22.18 | 8800  | 0.3309          | 0.8974   |
| 0.3351        | 22.43 | 8900  | 0.3324          | 0.8974   |
| 0.3301        | 22.68 | 9000  | 0.3308          | 0.8974   |
| 0.3196        | 22.94 | 9100  | 0.3330          | 0.8974   |
| 0.3339        | 23.19 | 9200  | 0.3333          | 0.8974   |
| 0.3249        | 23.44 | 9300  | 0.3308          | 0.8974   |
| 0.3247        | 23.69 | 9400  | 0.3338          | 0.8974   |
| 0.3369        | 23.94 | 9500  | 0.3313          | 0.8974   |
| 0.3291        | 24.2  | 9600  | 0.3320          | 0.8974   |
| 0.3307        | 24.45 | 9700  | 0.3309          | 0.8974   |
| 0.3328        | 24.7  | 9800  | 0.3307          | 0.8974   |
| 0.3277        | 24.95 | 9900  | 0.3342          | 0.8974   |
| 0.3278        | 25.2  | 10000 | 0.3310          | 0.8974   |
| 0.3197        | 25.46 | 10100 | 0.3349          | 0.8974   |
| 0.3273        | 25.71 | 10200 | 0.3321          | 0.8974   |
| 0.3345        | 25.96 | 10300 | 0.3312          | 0.8974   |
| 0.3351        | 26.21 | 10400 | 0.3325          | 0.8974   |
| 0.3144        | 26.47 | 10500 | 0.3346          | 0.8974   |
| 0.3361        | 26.72 | 10600 | 0.3311          | 0.8974   |
| 0.3334        | 26.97 | 10700 | 0.3307          | 0.8974   |
| 0.3287        | 27.22 | 10800 | 0.3373          | 0.8974   |
| 0.3374        | 27.47 | 10900 | 0.3307          | 0.8974   |
| 0.3302        | 27.73 | 11000 | 0.3307          | 0.8974   |
| 0.3245        | 27.98 | 11100 | 0.3315          | 0.8974   |
| 0.3353        | 28.23 | 11200 | 0.3335          | 0.8974   |
| 0.3191        | 28.48 | 11300 | 0.3336          | 0.8974   |
| 0.3226        | 28.73 | 11400 | 0.3308          | 0.8974   |
| 0.3384        | 28.99 | 11500 | 0.3322          | 0.8974   |
| 0.3368        | 29.24 | 11600 | 0.3337          | 0.8974   |
| 0.3224        | 29.49 | 11700 | 0.3332          | 0.8974   |
| 0.3224        | 29.74 | 11800 | 0.3318          | 0.8974   |
| 0.3363        | 29.99 | 11900 | 0.3310          | 0.8974   |
| 0.327         | 30.25 | 12000 | 0.3307          | 0.8974   |
| 0.3291        | 30.5  | 12100 | 0.3307          | 0.8974   |
| 0.3369        | 30.75 | 12200 | 0.3322          | 0.8974   |
| 0.3211        | 31.0  | 12300 | 0.3329          | 0.8974   |
| 0.329         | 31.25 | 12400 | 0.3321          | 0.8974   |
| 0.3206        | 31.51 | 12500 | 0.3309          | 0.8974   |
| 0.3339        | 31.76 | 12600 | 0.3332          | 0.8974   |
| 0.3323        | 32.01 | 12700 | 0.3316          | 0.8974   |
| 0.3273        | 32.26 | 12800 | 0.3323          | 0.8974   |
| 0.3362        | 32.51 | 12900 | 0.3307          | 0.8974   |
| 0.3387        | 32.77 | 13000 | 0.3309          | 0.8974   |
| 0.3173        | 33.02 | 13100 | 0.3311          | 0.8974   |
| 0.3291        | 33.27 | 13200 | 0.3309          | 0.8974   |
| 0.3316        | 33.52 | 13300 | 0.3315          | 0.8974   |
| 0.3366        | 33.77 | 13400 | 0.3332          | 0.8974   |
| 0.3115        | 34.03 | 13500 | 0.3383          | 0.8974   |
| 0.3275        | 34.28 | 13600 | 0.3324          | 0.8974   |
| 0.3373        | 34.53 | 13700 | 0.3315          | 0.8974   |
| 0.3247        | 34.78 | 13800 | 0.3313          | 0.8974   |
| 0.3349        | 35.03 | 13900 | 0.3325          | 0.8974   |
| 0.3223        | 35.29 | 14000 | 0.3312          | 0.8974   |
| 0.3321        | 35.54 | 14100 | 0.3308          | 0.8974   |
| 0.3304        | 35.79 | 14200 | 0.3316          | 0.8974   |
| 0.3262        | 36.04 | 14300 | 0.3320          | 0.8974   |
| 0.3239        | 36.29 | 14400 | 0.3317          | 0.8974   |
| 0.3325        | 36.55 | 14500 | 0.3308          | 0.8974   |
| 0.325         | 36.8  | 14600 | 0.3316          | 0.8974   |
| 0.3416        | 37.05 | 14700 | 0.3311          | 0.8974   |
| 0.3226        | 37.3  | 14800 | 0.3309          | 0.8974   |
| 0.3286        | 37.56 | 14900 | 0.3307          | 0.8974   |
| 0.3284        | 37.81 | 15000 | 0.3312          | 0.8974   |
| 0.3298        | 38.06 | 15100 | 0.3326          | 0.8974   |
| 0.3383        | 38.31 | 15200 | 0.3311          | 0.8974   |
| 0.3418        | 38.56 | 15300 | 0.3308          | 0.8974   |
| 0.3123        | 38.82 | 15400 | 0.3311          | 0.8974   |
| 0.3237        | 39.07 | 15500 | 0.3346          | 0.8974   |
| 0.3261        | 39.32 | 15600 | 0.3325          | 0.8974   |
| 0.3269        | 39.57 | 15700 | 0.3312          | 0.8974   |
| 0.3267        | 39.82 | 15800 | 0.3319          | 0.8974   |
| 0.3381        | 40.08 | 15900 | 0.3327          | 0.8974   |
| 0.3238        | 40.33 | 16000 | 0.3326          | 0.8974   |
| 0.3299        | 40.58 | 16100 | 0.3320          | 0.8974   |
| 0.3385        | 40.83 | 16200 | 0.3309          | 0.8974   |
| 0.3268        | 41.08 | 16300 | 0.3322          | 0.8974   |
| 0.3253        | 41.34 | 16400 | 0.3320          | 0.8974   |
| 0.3261        | 41.59 | 16500 | 0.3314          | 0.8974   |
| 0.3362        | 41.84 | 16600 | 0.3324          | 0.8974   |
| 0.3203        | 42.09 | 16700 | 0.3326          | 0.8974   |
| 0.325         | 42.34 | 16800 | 0.3323          | 0.8974   |
| 0.3172        | 42.6  | 16900 | 0.3326          | 0.8974   |
| 0.3361        | 42.85 | 17000 | 0.3308          | 0.8974   |
| 0.3432        | 43.1  | 17100 | 0.3310          | 0.8974   |
| 0.3396        | 43.35 | 17200 | 0.3313          | 0.8974   |
| 0.3163        | 43.6  | 17300 | 0.3328          | 0.8974   |
| 0.3353        | 43.86 | 17400 | 0.3318          | 0.8974   |
| 0.3299        | 44.11 | 17500 | 0.3317          | 0.8974   |
| 0.3213        | 44.36 | 17600 | 0.3319          | 0.8974   |
| 0.3253        | 44.61 | 17700 | 0.3329          | 0.8974   |
| 0.3391        | 44.86 | 17800 | 0.3322          | 0.8974   |
| 0.3179        | 45.12 | 17900 | 0.3330          | 0.8974   |
| 0.3348        | 45.37 | 18000 | 0.3321          | 0.8974   |
| 0.3116        | 45.62 | 18100 | 0.3326          | 0.8974   |
| 0.3334        | 45.87 | 18200 | 0.3322          | 0.8974   |
| 0.3401        | 46.12 | 18300 | 0.3315          | 0.8974   |
| 0.3381        | 46.38 | 18400 | 0.3311          | 0.8974   |
| 0.3154        | 46.63 | 18500 | 0.3327          | 0.8974   |
| 0.3348        | 46.88 | 18600 | 0.3322          | 0.8974   |
| 0.3285        | 47.13 | 18700 | 0.3325          | 0.8974   |
| 0.3256        | 47.39 | 18800 | 0.3329          | 0.8974   |
| 0.3389        | 47.64 | 18900 | 0.3325          | 0.8974   |
| 0.3288        | 47.89 | 19000 | 0.3327          | 0.8974   |
| 0.3172        | 48.14 | 19100 | 0.3327          | 0.8974   |
| 0.3211        | 48.39 | 19200 | 0.3325          | 0.8974   |
| 0.3348        | 48.65 | 19300 | 0.3325          | 0.8974   |
| 0.3327        | 48.9  | 19400 | 0.3326          | 0.8974   |
| 0.3341        | 49.15 | 19500 | 0.3326          | 0.8974   |
| 0.3344        | 49.4  | 19600 | 0.3325          | 0.8974   |
| 0.3207        | 49.65 | 19700 | 0.3326          | 0.8974   |
| 0.3299        | 49.91 | 19800 | 0.3326          | 0.8974   |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.0.post302
- Datasets 2.14.5
- Tokenizers 0.13.3