--- library_name: peft language: - ms license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - clt013/malay-speech-3k-rows-dataset_v2 model-index: - name: Whisper Large v3 FT Malay - CLT013 results: [] --- # Whisper Large v3 FT Malay - CLT013 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Malay Speech 3k dataset. It achieves the following results on the evaluation set: - Loss: 0.4149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.6257 | 0.3731 | 100 | 2.4258 | | 2.3394 | 0.7463 | 200 | 1.7629 | | 1.5256 | 1.1194 | 300 | 1.1983 | | 1.0648 | 1.4925 | 400 | 0.9111 | | 0.7458 | 1.8657 | 500 | 0.5754 | | 0.5287 | 2.2388 | 600 | 0.5316 | | 1.0221 | 2.6119 | 700 | 1.6308 | | 0.9045 | 2.9851 | 800 | 0.4655 | | 0.3766 | 3.3582 | 900 | 0.4186 | | 0.3767 | 3.7313 | 1000 | 0.4082 | | 0.355 | 4.1045 | 1100 | 0.4022 | | 0.3284 | 4.4776 | 1200 | 0.3996 | | 0.3229 | 4.8507 | 1300 | 0.3928 | | 0.318 | 5.2239 | 1400 | 0.3925 | | 0.3083 | 5.5970 | 1500 | 0.3905 | | 0.3035 | 5.9701 | 1600 | 0.3900 | | 0.2792 | 6.3433 | 1700 | 0.3897 | | 0.2948 | 6.7164 | 1800 | 0.3872 | | 0.2537 | 7.0896 | 1900 | 0.3869 | | 0.2703 | 7.4627 | 2000 | 0.3907 | | 0.2696 | 7.8358 | 2100 | 0.3891 | | 0.2672 | 8.2090 | 2200 | 0.3923 | | 0.2645 | 8.5821 | 2300 | 0.3900 | | 0.2419 | 8.9552 | 2400 | 0.3894 | | 0.2361 | 9.3284 | 2500 | 0.3928 | | 0.2361 | 9.7015 | 2600 | 0.3915 | | 0.2229 | 10.0746 | 2700 | 0.3922 | | 0.2151 | 10.4478 | 2800 | 0.3962 | | 0.248 | 10.8209 | 2900 | 0.3945 | | 0.2152 | 11.1940 | 3000 | 0.3981 | | 0.2144 | 11.5672 | 3100 | 0.4012 | | 0.2278 | 11.9403 | 3200 | 0.3970 | | 0.2017 | 12.3134 | 3300 | 0.4002 | | 0.216 | 12.6866 | 3400 | 0.4018 | | 0.2166 | 13.0597 | 3500 | 0.4013 | | 0.2176 | 13.4328 | 3600 | 0.4043 | | 0.2002 | 13.8060 | 3700 | 0.4054 | | 0.1752 | 14.1791 | 3800 | 0.4066 | | 0.1892 | 14.5522 | 3900 | 0.4048 | | 0.2121 | 14.9254 | 4000 | 0.4078 | | 0.209 | 15.2985 | 4100 | 0.4069 | | 0.1857 | 15.6716 | 4200 | 0.4079 | | 0.1867 | 16.0448 | 4300 | 0.4097 | | 0.1833 | 16.4179 | 4400 | 0.4093 | | 0.1918 | 16.7910 | 4500 | 0.4130 | | 0.1815 | 17.1642 | 4600 | 0.4123 | | 0.1854 | 17.5373 | 4700 | 0.4135 | | 0.181 | 17.9104 | 4800 | 0.4131 | | 0.1756 | 18.2836 | 4900 | 0.4130 | | 0.177 | 18.6567 | 5000 | 0.4143 | | 0.1829 | 19.0299 | 5100 | 0.4137 | | 0.1809 | 19.4030 | 5200 | 0.4163 | | 0.1777 | 19.7761 | 5300 | 0.4149 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1