--- language: - ja license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: whisper-large-v2-japanese-5k-steps results: [] --- # whisper-large-v2-japanese-5k-steps This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Japanese CommonVoice dataset (v11).. It achieves the following results on the evaluation set: - Loss: 0.4200 - Wer: 0.7449 ## Model description This model is finetuned for 5000 steps for research purposes which means that the transcriptions might not be that satisfactory for users. ## Training and evaluation data - Training Data: CommonVoice (v11) train split - Validation Data: CommonVoice (v11) Validation split - Test Data: CommonVoice (v11) Test split ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 50 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0111 | 7.63 | 1000 | 0.3210 | 0.7888 | | 0.0007 | 15.27 | 2000 | 0.3585 | 0.7478 | | 0.0003 | 22.9 | 3000 | 0.3937 | 0.7432 | | 0.0002 | 30.53 | 4000 | 0.4123 | 0.7443 | | 0.0002 | 38.17 | 5000 | 0.4200 | 0.7449 | ### Transcription ```python from datasets import load_dataset, Audio import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration # device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # load the model processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-japanese-5k-steps") model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-japanese-5k-steps").to(device) forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="transcribe") # load the dataset commonvoice_eval = load_dataset("mozilla-foundation/common_voice_11_0", "ja", split="validation", streaming=True) commonvoice_eval = commonvoice_eval.cast_column("audio", Audio(sampling_rate=16000)) sample = next(iter(commonvoice_eval))["audio"] # features and generate token ids input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features predicted_ids = model.generate(input_features.to(device), forced_decoder_ids=forced_decoder_ids) # decode transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(transcription) ``` ### Evaluation: Evaluates this model on `mozilla-foundation/common_voice_11_0` test split. ```python from transformers.models.whisper.english_normalizer import BasicTextNormalizer from datasets import load_dataset, Audio import evaluate import torch import re from transformers import WhisperProcessor, WhisperForConditionalGeneration # device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # metric wer_metric = evaluate.load("wer") # model processor = WhisperProcessor.from_pretrained("clu-ling/whisper-large-v2-japanese-5k-steps") model = WhisperForConditionalGeneration.from_pretrained("clu-ling/whisper-large-v2-japanese-5k-steps") # dataset dataset = load_dataset("mozilla-foundation/common_voice_11_0", "ja", split="test", ) #cache_dir=args.cache_dir dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) #for debuggings: it gets some examples #dataset = dataset.shard(num_shards=7000, index=0) #print(dataset) def normalize(batch): batch["gold_text"] = whisper_norm(batch['sentence']) return batch def map_wer(batch): model.to(device) forced_decoder_ids = processor.get_decoder_prompt_ids(language = "ja", task = "transcribe") inputs = processor(batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"], return_tensors="pt").input_features with torch.no_grad(): generated_ids = model.generate(inputs=inputs.to(device), forced_decoder_ids=forced_decoder_ids) transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] batch["predicted_text"] = whisper_norm(transcription) return batch # process GOLD text processed_dataset = dataset.map(normalize) # get predictions predicted = processed_dataset.map(map_wer) # word error rate wer = wer_metric.compute(references=predicted['gold_text'], predictions=predicted['predicted_text']) wer = round(100 * wer, 2) print("WER:", wer) ``` ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2