--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Direct Use ```python from transformers import AutoImageProcessor from transformers.models.detr import DetrForSegmentation img_proc = AutoImageProcessor.from_pretrained( "ArkeaIAF/detr-layout-detection" ) model = DetrForSegmentation.from_pretrained( "ArkeaIAF/detr-layout-detection" ) with torch.inference_mode(): input_ids = img_proc(img, return_tensors='pt') output = model(**input_ids) threshold=0.4 segmentation_mask = img_proc.post_process_segmentation( out_seg, threshold=threshold, target_sizes=[img.size[::-1]] ) bbox_pred = img_proc.post_process_object_detection( output, threshold=threshold, target_sizes=[img.size[::-1]] ) ``` ### Citation ``` @online{DeDetrLay, AUTHOR = {Cyrile Delestre}, URL = {https://huggingface.co/cmarkea/detr-base-layout-detection}, YEAR = {2024}, KEYWORDS = {Image Processing ; Transformers ; Layout}, } ```